Princípios básicos e aplicações oncológicas da PET-CT/18F-FDG

Autores

DOI:

https://doi.org/10.11606/issn.1679-9836.v99i2p156-163

Palavras-chave:

Oncologia, Tomografia computadorizada com tomografia por emissão de pósitron, Fluordesoxiglucose F18

Resumo

A Tomografia por Emissão de Pósitrons/Tomografia Computadorizada representa um grande salto tecnológico para a Medicina Nuclear e particularmente, para a Oncologia, visto que é capaz de distinguir alterações benignas e malignas com base em dados semiquantitativos da metabolização de radiofármacos pelos tecidos corporais. Este trabalho teve como objetivo realizar uma revisão narrativa dos principais levantamentos bibliográficos contemporâneos acerca dos princípios físicos da PET-CT/18F-FDG, suas aplicações na Oncologia e os avanços tecnológicos desta metodologia. Este trabalho foi elaborado com base em artigos obtidos de bancos de dados como PubMed, SciELO e Microsoft Academic Search, com descritores relacionados a PET-CT/18F-FDG e a Oncologia. A partir dos artigos analisados, observa-se que a PET-CT/18F-FDG é uma importante técnica para a obtenção de imagens morfofuncionais do corpo do paciente com sensibilidade e especificidade, muitas vezes, superiores aos métodos convencionais de diagnóstico por imagem. Dessa forma, a PET-CT/18F-FDG é recomendada nos casos de identificação e acompanhamento do estadiamento tumoral, monitoramento da taxa de resposta das terapias oncológicas e planejamento do alvo em tratamentos radioterápicos. Ainda, o desenvolvimento de algoritmos matemáticos e de sistemas de detecção de radiação mais eficientes na PET-CT/18F-FDG melhoram a qualidade da imagem e reduzem o tempo de exame.

Downloads

Os dados de download ainda não estão disponíveis.

Biografia do Autor

  • Edigar Henrique Vaz Dias, Universidade de Uberaba

    Doutor em Genética e Bioquímica pelo Departamento de Biotecnologia da Universidade Federal de Uberlândia, Uberlândia, MG, Especialista em Tecnologia em Diagnóstico por Imagem pela Universidade de Uberaba, Uberaba, MG, e Docente da Universidade do Estado de Minas Gerais, Ituiutaba, MG.

  • Eduardo Batista de Carvalho, Universidade de Uberaba

    Mestre em Engenharia Biomédica pela Faculdade de Engenharia Elétrica da Universidade Federal de Uberlândia e professor do curso de Especialização em Tecnologia em Diagnóstico por Imagem da Universidade de Uberaba.

  • Diogo de Sousa Pereira, Universidade de Uberaba

    Especialista em Imaginologia pela Faculdade Método de São Paulo e professor do curso de Especialização em Tecnologia em Diagnóstico por Imagem da Universidade de Uberaba

Referências

Schillaci O, Urbano N. Digital PET/CT: a new intriguing chance for clinical nuclear medicine and personalized molecular imaging. Eur J Nucl Med Mol Imaging. 2019;46(6):1222-25. doi: https://doi.org/10.1007/s00259-019-04300-z.

Derlin T, Grünwald V, Steinbach J, Wester H, Ross TL. Molecular Imaging in Oncology Using Positron Emission Tomography. Dtsch Arztebl Int. 2018;115(11):175-81. doi: https://doi.org/10.3238/arztebl.2018.0175.

El-Galaly TC, Villa D, Gormsen LC, Baech J, Lo A, Cheah CY. FDG-PET/CT in the management of lymphomas: current status and future directions. J Intern Med. 2018;284:358-76. doi: https://doi.org/10.1111/joim.12813.

Gillings N. Radiotracers for positron emission tomography imaging. Magn Reson Mater Phy. 2013;26:149-58. doi: https://doi.org/10.1007/s10334-012-0356-1.

Ido T, Wan C-N, Casella V, Fowler JS, Wolf AP. Labeled 2-deoxy-D-glucose analogs. 18F-labeled 2-deoxy-2-fluoro-D-glucose, 2-deoxy-2-fluoro-D-mannose and 14C-2-deoxy-2-fluoro-D-glucose. J Label Compd Radiopharm. 1978;14(2):175-83. doi: https://doi.org/10.1002/jlcr.2580140204.

Fadaka A, Ajiboye B, Ojo O, Adewale O, Olayide I, Emuowhochere R. Biology of glucose metabolization in cancer cells. J Oncol Sci. 2017;3(2):45-51. doi: https://doi.org/10.1016/j.jons.2017.06.002.

Espallardo IT. PET/TAC: bases físicas, instrumentación y avances. Radiologia. 2017;59(5):431-45. doi: https://doi.org/10.1016/j.rx.2016.10.010.

Romans LE. Computed tomography for technologists: a comprehensive text. Philadelphia: Wollters Kluwer Health; 2011.

Kostakoglu L, Hardoff R, Mirtcheva R, Goldsmith SJ. PET-CT fusion imaging in differentiating physiologic from pathologic FDG uptake. Radiographics. 2004;24(5):1411-31. doi: https://doi.org/10.1148/rg.245035725.

Chong GO, Jeong SY, Lee YH, Lee HJ, Lee S-W, Han HS, et al. The ability of whole-body SUVmax in F-18 FDG PET/CT to predict suboptimal cytoreduction during primary debulking surgery for advanced ovarian cancer. J Ovarian Res. 2019;12(1):1-8. doi: https://doi.org/10.1186/s13048-019-0488-2.

Wasim AS, Mumtaz F. Limitations of CT scanning in Bosniak staging of renal cystic carcinoma. J Surg Case Rep. 2018;2018(4):rjy052. doi: https://doi.org/10.1093/jscr/rjy052.

Brito AET, Matushita C, Esteves F. Cervical cancer-staging and restaging with 18F-FDG PET/CT. Rev Assoc Med Bras. 2019;65(4):568-75. doi: https://doi.org/10.1590/1806-9282.65.4.568.

Weiler-Sagie M, Bushelev O, Epelbaum R, Dann EJ, Haim N, Avivi I, et al. 18F-FDG avidity in lymphoma readdressed: A study of 766 patients. J Nucl Med. 2010;51(1):25-30. doi: https://doi.org/10.2967/jnumed.109.067892.

Cerci JJ, Bogoni M, Buccheri V, Etchebehere ECS de C, Silveira TMB da, Baiocchi O, et al. Fluorodeoxyglucose-positron emission tomography staging can replace bone marrow biopsy in Hodgkin’s lymphoma. Results from Brazilian Hodgkin’s Lymphoma Study Group. Hematol Transfus Cell Ther. 2018;40(3):245-9. doi: https://doi.org/10.1016/j.htct.2018.03.002.

Bednaruk-Młyński E, Pieńkowska J, Skórzak A, Małkowski B, Kulikowski W, Subocz E, et al. Comparison of positron emission tomography/computed tomography with classical contrast-enhanced computed tomography in the initial staging of Hodgkin lymphoma. Leuk Lymphoma. 2015;56(2):377-82. doi: https://doi.org/10.3109/10428194.2014.919635.

Ahmed T, Begum F, Begum SMF. Value of PET-CT Staging in Lymphoma Patients at Baseline over Clinical Staging. Bangladesh J Nucl Med. 2019;22(1):15-22. doi: https://doi.org/10.3329/bjnm.v22i1.40498.

Attalla RA, Abo Dewan KA, Mohammed DM, Ahmed AAA. The role of F-18 positron emission tomography/computed tomography in evaluation of extranodal lymphoma. Egypt J Radiol Nucl Med. 2018;49(3):737-46. doi: https://doi.org/10.1016/j.ejrnm.2018.04.002.

Karak F El, Bou-Orm IR, Ghosn M, Kattan J, Farhat F, Ibrahim T, et al. PET/CT Scanner and Bone Marrow Biopsy in Detection of Bone Marrow Involvement in Diffuse Large B-Cell Lymphoma. PLoS One. 2017;12(1):e0170299. doi: https://doi.org/10.1371/journal.pone.0170299.

Zhou X, Chen R, Huang G, Liu J. Potential clinical value of PET/CT in predicting occult nodal metastasis in T1-T2N0M0 lung cancer patients staged by PET/CT. Oncotarget. 2017;8:82437-45. doi: https://doi.org/10.18632/oncotarget.19535.

Abo-Sheisha DM, Badawy ME. The diagnostic value of PET/CT in recurrence and distant metastasis in breast cancer patients and impact on disease free survival. Egypt J Radiol Nucl Med. 2014;45(4):1317-24. doi: https://doi.org/10.1016/j.ejrnm.2014.07.006.

Al-Muqbel KM. Bone Marrow Metastasis is an Early Stage of Bone Metastasis in Breast Cancer Detected Clinically by F18-FDG-PET/CT Imaging. Biomed Res Int. Hindawi; 2017;2017:1-7. doi: https://doi.org/10.1155/2017/9852632.

Koç ZP, Kara PÖ, Dağtekin A. Detection of unknown primary tumor in patients presented with brain metastasis by F-18 fluorodeoxyglucose positron emission tomography/computed tomography. CNS Oncol. 2018;7(2):CNS12. doi: https://doi.org/10.2217/cns-2017-0018.

Noij D, Martens RM, Zwezerijnen B, Koopman T, Bree R, Hoekstra OS, et al. Diagnostic value of diffusion-weighted imaging and 18F-FDG-PET/CT for the detection of unknown primary head and neck cancer in patients presenting with cervical metastasis. Eur J Radiol. 2018;107:20-5. doi: https://doi.org/10.1016/j.ejrad.2018.08.009.

Lowe VJ, Duan F, Subramaniam RM, Sicks JD, Romanoff J, Bartel T, et al. Multicenter Trial of [18F]fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Staging of Head and Neck Cancer and Negative Predictive Value and Surgical Impact in the N0 Neck: Results From ACRIN 6685. J Clin Oncol. 2019;37(20):1704-12. doi: https://doi.org/10.1200/JCO.18.01182.

Gkogkozotou V-KI, Gkiozos IC, Charpidou AG, Kotteas EA, Boura PG, Tsagouli SN, et al. PET/CT and brain MRI role in staging NSCLC: prospective assessment of the accuracy, reliability and cost–effectiveness. Lung Cancer Manag. 2018;7(2):LMT02. doi: https://doi.org/10.2217/lmt-2018-0008.

Sui Y, Zou Z, Li F, Hao C. Application value of MRI diffuse weighted imaging combined with PET/CT in the diagnosis of stomach cancer at different stages. Oncol Lett. 2019;18(1):43-8. doi: https://doi.org/10.3892/ol.2019.10286.

Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, Verweij J, et al. New guidelines to evaluate the response to treatment in solid tumors. J Natl Cancer Inst. 2000;92(3):205-16. doi: https://doi.org/10.1093/jnci/92.3.205.

Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: Revised RECIST Guideline (version 1.1). Eur J Cancer. 2009;45(2):228-47. doi: https://doi.org/10.1016/j.ejca.2008.10.026.

Kim HD, Kim BJ, Kim HS, Kim JH. Comparison of the morphologic criteria (RECIST) and metabolic criteria (EORTC and PERCIST) in tumor response assessments: A pooled analysis. Korean J Intern Med. 2019;34(3):608-17. doi: https://doi.org/10.3904/kjim.2017.063.

Mahasittiwat P, Yuan S, Xie C, Ritter T, Cao Y, Ten HRK, et al. Metabolic tumor volume on PET reduced more than gross tumor volume on CT during radiotherapy in patients with non-small cell lung cancer treated with 3DCRT or SBRT. J Radiat Oncol. 2013;2(2):191-202. doi: https://doi.org/10.1007/s13566-013-0091-x.

Akins NS, Nielson TC, Le HV. Inhibition of Glycolysis and Glutaminolysis: An Emerging Drug Discovery Approach to Combat Cancer. Curr Top Med Chem. 2018;18(6):494-504. doi: https://doi.org/10.2174/1568026618666180523111351.

Yaprak G, Ozcelik M, Gemici C, Seseogullari O. Pretreatment SUV max Value for Predicting Outcome in Stage III NSCLC Patients Receiving Concurrent Chemoradiotherapy. North Clin Istanbul. 2019;6(2):129-33. doi: https://doi.org/10.14744/nci.2019.02212.

Zhao X-R, Zhang Y, Yu Y-H. Use of 18 F-FDG PET/CT to predict short-term outcomes early in the course of chemoradiotherapy in stage III adenocarcinoma of the lung. Oncol Lett. 2018;16(1):1067-72. doi: https://doi.org/10.3892/ol.2018.8748.

Vlenterie M, Oyen WJG, Steeghs N, Desar IME, Verheijen RB, Koenen AM, et al. Early metabolic response as a predictor of treatment outcome in patients with metastatic soft tissue sarcomas. Anticancer Res. 2019;39(3):1309-16. doi: https://doi.org/10.21873/anticanres.13243.

Sager S, Akgün E, Uslu-Beşli L, Asa S, Akovali B, Sahin O, et al. Comparison of PERCIST and RECIST criteria for evaluation of therapy response after yttrium-90 microsphere therapy in patients with hepatocellular carcinoma and those with metastatic colorectal carcinoma. Nucl Med Commun. 2019;40(5):461-68. doi: https://doi.org/10.1097/MNM.0000000000001014.

Beer L, Hochmair M, Haug A, Schwabel B, Kifjak D, Wadsak W, et al. Comparison of RECIST, iRECIST, and PERCIST for the evaluation of response to PD-1/PD-L1 blockade therapy in patients with non-small cell lung cancer. Clin Nucl Med. 2019;44(7):535-43. doi: https://doi.org/10.1097/RLU.0000000000002603.

Cheson BD, Fisher RI, Barrington SF, Cavalli F, Schwartz LH, Zucca E, et al. Recommendations for Initial Evaluation, Staging, and Response Assessment of Hodgkin and Non-Hodgkin Lymphoma: The Lugano Classification. J Clin Oncol. 2014;32(27):3059-68. doi: https://doi.org/10.1200/JCO.2013.54.8800.

Cheson BD, Ansell S, Schwartz L, Gordon LI, Advani R, Jacene HA, et al. Refinement of the Lugano Classification lymphoma response criteria in the era of immunomodulatory therapy. Blood. 2016;128(21):2489-97. doi: https://doi.org/10.1182/blood-2016-05-718528.

Dercle L, Ammari S, Seban RD, Schwartz LH, Houot R, Labaied N, et al. Kinetics and nadir of responses to immune checkpoint blockade by anti-PD1 in patients with classical Hodgkin lymphoma. Eur J Cancer. 2018;91:136-44. doi: https://doi.org/10.1016/j.ejca.2017.12.015.

Hutchings M, Loft A, Hansen M, Pedersen LM, Buhl T, Jurlander J, et al. FDG-PET after two cycles of chemotherapy predicts treatment failure and progression-free survival in Hodgkin lymphoma. Blood. 2006;107(1):52-9. doi: https://doi.org/10.1182/blood-2005-06-2252.

Collantes M, Martínez-Vélez N, Zalacain M, Marrodán L, Ecay M, García-Velloso MJ, et al. Assessment of metabolic patterns and new antitumoral treatment in osteosarcoma xenograft models by [18F]FDG and sodium [18F]fluoride PET. BMC Cancer. BMC Cancer. 2018;18(1):1193. doi: https://doi.org/10.1186/s12885-018-5122-y.

Wang S, Niu X, Bao X, Wang Q, Zhang J, Lu S, et al. The PI3K inhibitor buparlisib suppresses osteoclast formation and tumour cell growth in bone metastasis of lung cancer, as evidenced by multimodality molecular imaging. Oncol Rep. 2019;41(5):2636-46. doi: https://doi.org/10.3892/or.2019.7080.

Acuff SN, Jackson AS, Subramaniam RM, Osborne D. Practical considerations for integrating PET/CT into radiation therapy planning. J Nucl Med Technol. 2018;46(4):343-8. doi: https://doi.org/10.2967/jnmt.118.209452.

Specht L, Berthelsen AK. PET/CT in Radiation Therapy Planning. Semin Nucl Med. 2018;48(1):67-75. doi: https://doi.org/10.1053/j.semnuclmed.2017.09.006.

Du XL, Jiang T, Sheng XG, Li QS, Wang C, Yu H. PET/CT scanning guided intensity-modulated radiotherapy in treatment of recurrent ovarian cancer. Eur J Radiol. 2012;81(11):3551-6. doi: http://dx.doi.org/10.1016/j.ejrad.2012.03.016.

Beaton L, Bandula S, Gaze MN, Sharma RA. How rapid advances in imaging are defining the future of precision radiation oncology. Br J Cancer. 2019;120:779-90. doi: https://doi.org/10.1038/s41416-019-0412-y.

Brock KK, Mutic S, McNutt TR, Li H, Kessler ML. Use of image registration and fusion algorithms and techniques in radiotherapy: Report of the AAPM Radiation Therapy Committee Task Group No. 132. Med Phys. 2017;44(7):e43-76. doi: https://doi.org/10.1002/mp.12256.

Alongi P, Laudicella R, Desideri I, Chiaravalloti A, Borghetti P, Quartuccio N, et al. Positron emission tomography with computed tomography imaging (PET/CT) for the radiotherapy planning definition of the biological target volume: PART 1. Crit Rev Oncol Hematol. 2019;140:74-9. doi: https://doi.org/10.1016/j.critrevonc.2019.01.011.

Toya R, Matsuyama T, Saito T, Imuta M, Shiraishi S, Fukugawa Y, et al. Impact of hybrid FDG-PET/CT on gross tumor volume definition of cervical esophageal cancer: reducing interobserver variation. J Radiat Res. 2019;60(3):348-52. doi: https://doi.org/10.1093/jrr/rrz004.

Zheng Y, Sun X, Wang J, Zhang L, Di X, Xu Y. FDG-PET/CT imaging for tumor staging and definition of tumor volumes in radiation treatment planning in non-small cell lung cancer. Oncol Lett. 2014;7(4):1015-20. doi: https://doi.org/10.3892/ol.2014.1874.

Lee YK, Cook G, Flower MA, Rowbottom C, Shahidi M, Sharma B, et al. Addition of 18F-FDG-PET scans to radiotherapy planning of thoracic lymphoma. Radiother Oncol. 2004;73(3):277-83. doi: https://doi.org/10.1016/j.radonc.2004.07.029.

Yaraghi Y, et al. Comparison of PET/CT and CT-based tumor delineation and its effects on the radiation treatment planning for non-small cell lung cancer. Iran J Nucl Med. 2018;26(1):9–15.

Dȩbiec K, Wydmański J, Gorczewska I, Leszczyńska P, Gorczewski K, Leszczynski W, et al. 18-fluorodeoxy-glucose positron emission tomography- computed tomography (18-FDG-PET/CT) for gross tumor volume (GTV) delineation in gastric cancer radiotherapy. Asian Pacific J Cancer Prev. 2017;18(11):2989-98. doi: https://doi.org/10.22034/APJCP.2017.18.11.2989.

Schreurs LMA, Busz DM, Paardekooper GMRM, Beukema JC, Jager PL, Jagt EJ Van der, et al. Impact of 18-fluorodeoxyglucose positron emission tomography on computed tomography defined target volumes in radiation treatment planning of esophageal cancer. Dis Esophagus. 2010;23(6):493-501. doi: https://doi.org/10.1111/j.1442-2050.2009.01044.x.

Ligtenberg H, Jager EA, Caldas-Magalhaes J, Schakel T, Pameijer FA, Kasperts N, et al. Modality-specific target definition for laryngeal and hypopharyngeal cancer on FDG-PET, CT and MRI. Radiother Oncol. 2017;123(1):63-70. doi: https://doi.org/10.1016/j.radonc.2017.02.005.

Leclerc M, Lartigau E, Lacornerie T, Daisne J-F, Kramar A, Grégoire V. Primary tumor delineation based on 18FDG PET for locally advanced head and neck cancer treated by chemo-radiotherapy. Radiother Oncol. 2015;116(1):87-93. doi: https://doi.org/10.1016/j.radonc.2015.06.007.

Vojtíšek R, Mužík J, Šlampa P, Budíková M, Hejsek J, Smolák P, et al. The impact of PET/CT scanning on the size of target volumes, radiation exposure of organs at risk, TCP and NTCP, in the radiotherapy planning of non-small cell lung cancer. Reports Pract Oncol Radiother. 2014;19(3):182-90. doi: https://doi.org/10.1016/j.rpor.2013.09.006.

Zhang X, Xie Z, Berg E, Judenhofer MS, Liu W, Xu T, et al. Total-body dynamic reconstruction and parametric imaging on the uEXPLORER. J Nucl Med. 2020;61(2):285-91. doi: https://doi.org/10.2967/jnumed.119.230565.

Miller M, Zhang J, Binzel K, Griesmer J, Laurence T, Narayanan M, et al. Characterization of the Vereos Digital Photon Counting PET System. J Nucl Med, 2015;56(Suppl 3):434.

Rausch I, Ruiz A, Valverde-Pascual I, Cal-González J, Beyer T, Carrio I. Performance evaluation of the Vereos PET/CT system according to the NEMA NU2-2012 standard. J Nucl Med. 2019;60(4):561-7. doi: https://doi.org/10.2967/jnumed.118.215541.

López-Mora DA, Flotats A, Fuentes-Ocampo F, Camacho V, Fernández A, Ruiz A, et al. Comparison of image quality and lesion detection between digital and analog PET/CT. Eur J Nucl Med Mol Imaging. 2019;46(6):1383-90. doi: https://doi.org/10.1007/s00259-019-4260-z.

van Sluis JJ, Jong J, Schaar J, Noordzij W, van Snick P, Dierckx R, et al. Performance characteristics of the digital biograph vision PET/CT system. J Nucl Med. 2019;60(7):1031-36. doi: https://doi.org/10.2967/jnumed.118.215418.

Publicado

2020-04-23

Edição

Seção

Artigos de Revisão/Review Articles

Como Citar

Dias, E. H. V., Carvalho, E. B. de, & Pereira, D. de S. (2020). Princípios básicos e aplicações oncológicas da PET-CT/18F-FDG. Revista De Medicina, 99(2), 156-163. https://doi.org/10.11606/issn.1679-9836.v99i2p156-163