APLICAÇÕES DO MÉTODO DE RIETVELD EM MINERALOGIA

F.M.S.Carvalho D.Atencio

INTRODUÇÃO

O método de Rietveld tem sido considerado uma das principais ferramentas no estudo de estruturas cristalinas por difração de neutrons, hoje existindo, também, sua versão para difração de raios X e para síncroton.

Rietveld (1967, 1969), preocupado com problemas relacionados a estudos de difração de neutrons, observou que, se fossem modelados os fatores instrumentais, seria possível, então, refinar os parâmetros cristalográficos. A idéia foi rapidamente incorporada por pesquisadores que trabalhavam com difração de raios X. Malmros & Thomas (1977) e Young et al. (1977) lançaram as primeiras versões do método aplicado à difração de raios X, que tem sido aprimoradas até o presente. O método de Rietveld tem se popularizado com o aparecimento dos computadores pessoais, podendo-se encontrar um grande número de algoritmos espalhados pelo mundo. Alguns fabricantes de aparelhos de difração de raios X (por exemplo, Philips e Siemens) já incluem versões do Método de Rietveld em seus pacotes de spftware.

APLICAÇÕES

Muitos mineralogistas já se depararam com problemas que só poderiam ser resolvidos por métodos cristalográficos relativamente complexos, que se utilizam de cristais únicos ou aplicam a difração de neutrons. Estes métodos necessitam, no primeiro caso, de cristais bem formados e com dimensões convenientes ou, no segundo, grande quantidade de amostra. A dificuldade de se obterem amostras com estas características é evidente em ambiente geológico, tornando muitos estudos impraticáveis. O método de Rietveld, apesar de não ser um método de resolução de estrutura propriamente dito, mas sim um método de refinamento, tem sido utilizado para

Departamento de Mineralogia e Petrologia, Instituto de Geociências, USP.

determinar estruturas cristalinas por comparação com dados obtidos para compostos isomorfos, como mostram Post & Bish (1989).

Para trabalhos mais simples, como o refinamento de parâmetros de cela, o método de Rietveld gera resultados mais precisos que os métodos convencionais.

Outra importante aplicação do método consiste na quantificação de misturas de fases cristalinas, sem o uso de padrões externos ou internos, sendo muito eficiente para a maioria dos materiais, já se dispondo de programa específico produzido pela Sietronics. Mais informações a respeito da aplicação do método para quantificação de fases podem ser encontradas em Snyder & Bish (1989).

A TÉCNICA

A técnica aplicada, em resumo, consiste na procura do melhor ajuste entre um modelo calculado e os dados observados a partir de um diagrama de pó. O melhor ajuste é conseguido a partir do refinamento de parâmetros do equipamento, da preparação de amostras, e de dados do cristal (parâmetros de cela unitária, posições atômicas, fatores de temperatura e de ocupação atômica). A Figura 1 exemplifica um refinamento efetuado para o quartzo, onde foi obtido o melhor ajuste.

PARÂMETROS REFINÁVEIS

Diversos parâmetros podem ser refinados pelo método de Rietveld, entre os quais enumeram-se os seguintes: orientação preferencial, deslocamento do porta-amostra, transparência, absorção, background, assimetria do perfil, perfil instrumental, parâmetros atômicos, ocupação atômica, parâmetros de cela unitária, grau de cristalinidade, extinções sistemáticas e fator de escala.

REQUISITOS BÁSICOS

Para a aplicação do método de Rietveld, necessita-se de um difratômetro com motor de passo, possibilitando, assim, a digitalização dos dados para um microcomputador, ou um microdensitômetro para a digitalização de filmes. Uma boa preparação de amostra, de forma que sejam minimizados os efeitos de preparação, um equipamento bem calibrado e um modelo inicial próximos à realidade do material a ser estudado, além de um computador VAX ou PC (de preferência 386 ou superior, com coprocessador matemático) e um bom conhecimento dos efeitos instrumentais, de preparação e da estrutura cristalina que interferem no modelo são os principais requisitos para a aplicação do método de Rietveld.

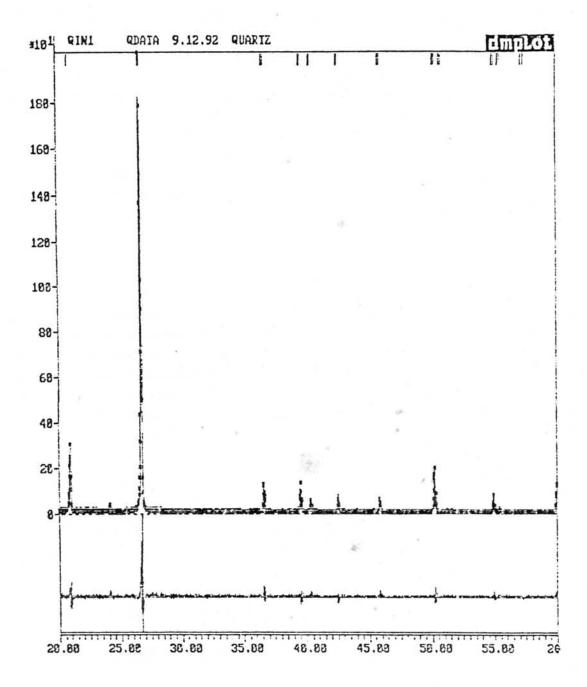


Figura 1 - Representação gráfica do método de Rietveld aplicado ao quartzo. A curva pontilhada representa os dados coletados no difratômetro, a curva contínua representa a reprodução do modelo idealizado e refinado, a linha abaixo da linha de base representa a diferença entre os dados coletados e os dados medidos.

IMPLANTAÇÃO DO MÉTODO DE RIETVELD NO LABORATÓRIO DE DIFRATOMETRIA DE RAIOS X DO INSTITUTO DE GEOCIÊNCIAS DA USP

O Laboratório de Difratometria de Raios X do Instituto de Geociências da USP possui cópia do programa DBWS 9006, gentilmente cedida pelo autor, Dr. Young durante a Second Rietveld Summer School, realizada no Instituto de Física da USP, em dezembro de 1992, organizada pela Sociedade Brasileira de Cristalografia. Mais detalhes a respeito deste software podem ser encontrados em Young (1992).

A partir deste programa, a técnica está sendo implantada no Laboratório, tanto instrumentalmente, quanto com relação à preparação de amostras, podendo, em curto espaço de tempo gerar os primeiros resultados.

CONCLUSÕES

O método de Rietveld mostra-se de grande importância para estudos mineralógicos, por permitir a obtenção de dados de estrutura cristalina a partir de pequenas quantidades de amostras policristalinas de minerais. Pode-se, entre outras coisas, quantificar fases cristalinas, calcular parâmetros de cela unitária, obter relações estequiométricas, posições atômicas. Apesar de os resultados obtidos não apresentarem a mesma precisão, até o momento, que aqueles oriundos de estudos por neutrons ou monocristal, pode-se atingir valores bastante satisfatórios.

REFERÊNCIAS BIBLIOGRÁFICAS

- Malmros, G. & Thomas, J.O. (1977) Least-square structure refinement based on profile analysis of film intensity data measured on an automatic micro densitometer. J. Appl. Cryst., 10:7-11.
- Post, J.E. & Bish, D.L. (1989) Rietveld refinement of crystal structures using powder X-ray diffraction data. In: Bish, D.L. & Post, J.E. (ed.) Modern Powder Diffraction. Rewiews in Mineralogy, 20:277-308.
- Rietveld, H.M. (1967) Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Cryst., 22:151-152.
- Rietveld, H.M. (1969) A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst., 2:65-71.
- Snyder, R.L. & Bish, D.L. (1989) Quantitative Analysis. In: Bish, D.L. & Post, J.E. (ed.) Modern Powder Diffraction. Rewiews in Mineralogy, 20:101-144.
- Young, R.A.; MacKie, P.E.; Von Dreele, R.B. (1977) Application of the pattern-fitting structure-refinement method to X-ray powder diffractometer patterns. J. Appl. Cryst., 10:262-269.
- Young, R.A. (ed.) (1992) The Rietveld Method. Oxford University Press (in press).