Exopolysaccharides from Klebsiella oxytoca: anti-inflammatory activity

Authors

  • Thays Avelino Bannwart Department of Pharmacy, Graduate Program in Pharmaceutical Sciences, State University of Maringá, 87.020-900 Maringá, PR, Brazil
  • Ciomar A. Bersani Amado Department of Pharmacology and Therapeutic, State University of Maringá, 87.020-900 Maringá, PR, Brazil
  • Franciele Queiroz Ames Department of Pharmacology and Therapeutic, State University of Maringá, 87.020-900 Maringá, PR, Brazil
  • Vera Lucia Dias Siqueira Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, PR, Brazil
  • Arildo José Braz Oliveira Department of Pharmacy, Graduate Program in Pharmaceutical Sciences, State University of Maringá, 87.020-900 Maringá, PR, Brazil https://orcid.org/0000-0001-8737-0546
  • Regina Aparecida Correia Gonçalves Department of Pharmacy https://orcid.org/0000-0003-4070-1269

DOI:

https://doi.org/10.1590/s2175-97902022e190511%20

Keywords:

Polysaccharides, Inflammation, Pleurisy, Edema, Leukocyte migration, Klebsiella oxytoca

Abstract

Exopolysaccharides (EPS) produced by Klebsiella oxytoca are of environmental, pharmaceutical,
and medicinal interest. However, studies about the anti-inflammatory activity of EPS produced by
this microorganism still remain limited. The aim of this study was to produce, characterize, and
evaluate the anti-inflammatory activity of EPS from K. oxytoca in a pleurisy model. Colorimetric
analysis revealed that precipitated crude exopolysaccharides (KEPSC) and deproteinated
exopolysaccharides (KEPS) present high levels of total carbohydrates (65.57% and 62.82%,
respectively). Analyses of uronic acid (7.90% in KEPSC and 6.21% in KEPS) and pyruvic acid
(3.01% in KEPSC and 1.68% in KEPS) confirm that the EPS are acidic. Gas chromatographymass spectrometry analyses demonstrated that the EPS consisted of rhamnose (29.83%), glucose
(11.21%), galactose (52.45%), and mannose (6.50%). The treatment of an experimental pleurisy
model in rats through subcutaneous administration of 50, 100, 200, and 400 mg/kg of KEPS
decreased both the volume of inflammatory exudate and the number of leukocytes recruited to
the pleural cavity. The present data showed that EPS production by K. oxytoca using the method
described is easy to perform and results in a good yield. In addition, we show that KEPS exhibit
anti-inflammatory activity when administered subcutaneously in rats

Downloads

Download data is not yet available.

References

Adebayo EA, Oloke JK, Majolagbe ON, Ajane RA, Bora TC. Antimicrobial and anti-inflammatory potential of polysaccharide from Pleurotus pulmonarius LAU 09. Afr J Microbiol Res. 2012;6(13):3315-23.

Amdekar S, Roy P, Singh V, Kumar A, Singh R, Sharma P. Anti-inflammatory activity of lactobacillus on carrageenan-induced paw edema in male wistar rats. Int J of Inflam. 2012;2012:1-6.

Baldi F, Minacci A, Pepi M, Scozzafava A. Gel sequestration of heavy metals by Klebsiella oxytoca isolated from iron mat. FEMS Microbiol Ecol. 2001;36(2-3):169-74.

Barbara UV, Chen M, Russell J, Crawford I, Ivanova EP. Bacterial extracellular polysaccharides involved in biofilm formation. Molecules. 2009;14(7):2535-54.

Celloto VR, Oliveira AJB, Gonçalves JE, Watanabe CSF, Matioli G, Gonçalves RAC. Biosynthesis of indole-3-acetic acid by new Klebsiella oxytoca free and immobilized cells on inorganic matrices. Sci World J. 2012; Article ID 495970:1-7.

Chaplin MF, Kennedy JF. Carbohydrate analysis: A practical approach, second ed.IRL Press; Oxford, 1994.

Dlamini AM, Peiris PS, Bavor JH, Kailasapathy K. Rheological characteristics of an exopolysaccharide produced by a strain of Klebsiella oxytoca J Biosci Bioeng. 2009;107(3):272-74.

Dlamini AM, Peiris PS, Bavor JH, Kailasapathy K. Characterization of the exopolysaccharide produced by a whey utilizing strain of Klebsiella oxytoca Afr J Biotechnol. 2007;6(22):2603-11. DOI: 10.5897/AJB2007.000-2416

» https://doi.org/10.5897/AJB2007.000-2416

Donot F, Fontana A, Baccou JC, Schorr-Galindo S. Microbial exopolysaccharides: Main examples of synthesis, excretion, genetics and extraction. Carbohyd Polym. 2012;87(2):951-62.

Du B, Zeng H, Yang Y, Bian Z, Xu, B. Anti-inflammatory activity of polysaccharide from Schizophyllum commune as affected by ultrasonication. Int J Biol Macromol. 2016;91:100-5.

Du B, Yang Y, Bian Z, Xu B. Characterization and Anti-Inflammatory Potential of an Exopolysaccharide from Submerged Mycelial Culture of Schizophyllum Commune Front Pharmacol. 2017;8(252):1-11.

Dubois MK, Gilles A, Hamilton JK, Reberes PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal Chem. 1956;28(3):350-56.

Feng L, Li D, Chen J. Characterization and fouling properties of exopolysaccharide produced by Klebsiella oxytoca Bioresour Technol. 2009;100(13):3387-94.

Gangalla R, Macha B, Kasarla S, Ee R, Thampu R K. Anti-inflammatory activity of the Exopolysaccharides (EPS) produced from polluted soil. Int J Pharm Biol Sci. 2018;8(1):623-31.

Goodman R, Mantegna LR, Mcallister CL, Bruin E, Dowling RL, George H, et al. IL-1 and its rolein rat carrageenin pleurisy. Mediators Inflamm. 1993;2(1):33-39.

Hamuro L, Kijanka G, Kinderman F, Kropshofer H, Bu D-X, Zepeda M, et al. Perspectives on Subcutaneous Route of Administration as an Immunogenicity Risk Factor for Therapeutic Proteins. J Pharm Sci. 2017;106(10):2946-54.

Hartree EF. A modification of the Lowry method that gives a linear photometric responser. Anal Biochem. 1972;48(2):422-27.

Higgs GA, Eakins KE, Mugridge KG, Moncada S. The effects of non-steroid anti-inflammatory drugs on leukocyte migration in carrageenin-induced inflammation. Eur J Pharmacol. 1980;66(1):81-86.

Hirota Y, Fujii T, Sano Y, Iyana S. Nitrogen fixation in the rhizo-sphere of rice. Nature. 1978;276:416-17.

Jain M, Parmar HS. Evaluation of antioxidative and anti-inflammatory potential of hesperidin and naringin on the rat air pouch model of inflammation. Inflamm Res. 2011;60(5):483-91.

Junhua W, Mengxian L, Ling L, Qi A, Jinlu Z, Jingkai Z, et al. Nitric oxide and interleukins are involved in cell proliferation of RAW264.7 macrophages activated by viili exopolysaccharides. Inflammation. 2013;36(4):954-61.

Kazy SK, Pinaki SAR, Singh SP, Asishand KS, D’Souza SF. Extracellular polysaccharides of a copper-sensitive and a copper-resistant Pseudomonas aeruginosa strain: synthesis, chemical nature and copper binding. World J Microbiol Biotechnol. 2002;18(6):583-88.

Lamb DH, Lei QP, Hakim N, Rizzo S, Cash P. Determination of meningococcal polysaccharides by capillary zone electrophoresis. Anal Biochem . 2005;338(2):263-9.

Leone S, Castro C, Parrilli M, Baldi F. Lanzetta R. Structure of the iron‐binding exopolysaccharide produced anaerobically by the Gram‐negative bacterium Klebsiella oxytoca BAS‐10. Eur J Org Chem. 2007;(31):5183-89.

Lever MA. New reaction for calorimetric determination of carbohydrates. Anal Biochem .1972;47(1):273-79.

Manivasagana P, Kanga K, Kimb D, Kima S. Production of polysaccharide-based bioflocculant for the synthesis of silver nanoparticles by Streptomyces sp. Int J Biol Macromol . 2015;77:159-67.

Marcial G, Messinga J, Menchicchi B, Goycoolea FM, Faller G, Graciela FV, et al. Effects of polysaccharide isolated from Streptococcus thermophiles CRL1190 on human gastric epithelial cells. Int J Biol Macromol . 2013;62:217-224.

Matsumoto Y, Ohmori H, Production of immunosuppressive polysaccharide, AZ9, in the culture of Klesiella oxytoca strain TNM3. J Biosci Bioeng . 2001;92:485-87.

Nogueira CAM, Momesso CAS, Machado RLD, Almeida MED, Rossita ARP. Performance of commercial kits and laboratory protocols for bacterial genomic DNA extraction. Panam Infectology. 2004;6:35-38.

Paula-Neto HA, Alves-Filho JC, Souto FO, Spiller F, Amêndoa RS, Freitas A, et al. Inhibition of guanylyl cyclase restores neutrophil migration and maintains bactericidal activity increasing survival in sepsis. Shock. 2011;35(1):17-27.

Procópio RL, Araújo WL, Maccheroni W, Azevedo JL. Characterization of an endophytic bacterial community associated with Eucalyptus spp. Genet Mol Res. 2009;8(4):1408-22.

Qiao D, Ke C, Hu B, Luo J, Ye H, Sun Y, et al. Antioxidant activities of polysaccharides from Hyriopsis cumingii Carbohydr Polym. 2009;78(2):199-204.

Ruas-Adiedo P, Creyes-Gavilan CG. Methods for the screening, isolation, and characterization of exopolysaccharides produced by lactic acid bacteria. J Dairy Sci. 2005;88(3):843-56.

Shi L. Bioactivities, isolation and purification methods of polysaccharides from natural products: A review. Int J Biol Macromol . 2016;92:37-48.

Sloneker JH, Orentas DG. Pyruvic acid, a unique component of an exocellular bacterial polysaccharide. Nature . 1962;194:478-79.

Snapper CM. Differential regulation of polysaccharide-specific antibody responses to isolated polysaccharides, conjugate vaccines, and intact Gram-positive versus Gram-negative extracellular bacteria. Vaccine. 2016;34(30):3542-48.

Sugihara R, Yoshimura M, Mori M, Kanayama N, Hikida M, Ohmori H. Prevention of collagen-induced arthritis in DBA/1 mice by oral administration of AZ-9, bacterial polysaccharide from Klebsiella oxytoca Immunopharmacology. 2000;49(3):325-33.

Sugihara R, Oiso Y, Matsumoto Y, Ohmori H. Production of immunosuppressive polysaccharide, AZ9, in the culture of Klesiella oxytoca strain TNM3. J Biosci Bioeng . 2001;92(5):485-87.

Sugihara R, Matsumoto Y, Ohmori H. Suppression of IgE antibody response in mice by a polysaccharide, AZ9, produced by Klebsiella oxytoca strain TNM3. Immunopharmacol Immunotoxicol. 2002;24(2):245-54.

Sun L, Chu J, Sun Z, Chen L. Physicochemical properties, immunomodulation and antitumor activities of polysaccharide from Pavlova viridis Life Sci. 2016;144:156-61.

Tian H, Yin X, Zeng Q, Zhu L, Chen J. Isolation, structure, and surfactant properties of polysaccharides from Ulva lactuca L. from South China Sea. Int J Biol Macromol . 2015;79:577-582.

Vinegar R, Truax JF, Selph JL. Quantitative comparison of the analgesic and anti-inflammatory activities of aspirin, phenacetin and acetaminophen in rodents. Eur J Pharmacol . 1976;37(1):23-30.

Wang K, Cheng F, Pan X, Zhou T, Liu X, Zheng Z, et al. Investigation of the transport and absorption of Angelica sinensis polysaccharide through gastrointestinal tract both in vitro and in vivo Drug Deliv. 2017;24(1):1360-1371.

Zha X, Lu C, Cui S, Pan L, Zhang H, Wang J, et al. Structural identification and immunostimulating activity of a Laminaria japonica polysaccharide. Int J Biol Macromol . 2015;78:429-38.

Wang Y, Li Y, Liu Y, Chen X, Wei X. Extraction, characterization and antioxidant activities of Se-enriched tea polysaccharides. Int J Biol Macromol . 2015;77:76-84.

York WS, Darvill AG, McNeil M, Stevenson TT, Albersheim P. Isolation and characterization of plant cell walls and cell wall components. Methods in Enzymol. 1985;118:3-40.

Downloads

Published

2022-11-23

Issue

Section

Original Article

How to Cite

Exopolysaccharides from Klebsiella oxytoca: anti-inflammatory activity. (2022). Brazilian Journal of Pharmaceutical Sciences, 58. https://doi.org/10.1590/s2175-97902022e190511

Funding data