Poloxamer-enhanced solubility of griseofulvin and its related antifungal activity against Trichophyton spp.

Autores

  • Vanessa Pittol Laboratory of Galenic Development, Pharmacy Faculty, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil https://orcid.org/0000-0003-3049-7348
  • Kleyton Santos Veras Laboratory of Galenic Development, Pharmacy Faculty, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
  • Samuel Kaiser Laboratory of Galenic Development, Pharmacy Faculty, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
  • Letícia Jacobi Danielli Laboratory of Pharmacognosy, Pharmacy Faculty, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
  • Alexandre Meneghello Fuentefria Laboratory of Applied Mycology, Pharmacy Faculty, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
  • George González Ortega Laboratory of Galenic Development, Pharmacy Faculty, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil

DOI:

https://doi.org/10.1590/s2175-97902022e19731%20%20

Palavras-chave:

Griseofulvin, Poloxamer 407, Micellar solubilization, Drug-polymer interaction, Antifungal activity

Resumo

Poorly water-soluble drugs, such as the antifungal drug griseofulvin (GF), exhibit limited bioavailability, despite their high membrane permeability. Several technological approaches have been proposed to enhance the water solubility and bioavailability of GF, including micellar solubilization. Poloxamers are amphiphilic block copolymers that increase drug solubility by forming micelles and supra-micellar structures via molecular self-association. In this regard, the aim of this study was to evaluate the water solubility increment of GF by poloxamer 407 (P407) and its effect on the antifungal activity against three Trichophyton mentagrophytes and two T. rubrum isolates. The GF water solubility profile with P407 revealed a non-linear behavior, well-fitted by the sigmoid model of Morgan-Mercer-Flodin. The polymer promoted an 8-fold increase in GF water solubility. Fourier-transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), and 2D nuclear magnetic resonance (NMR Roesy) spectroscopy suggested a GF-P407 interaction, which occurs in the GF cyclohexene ring. These results were supported by an increase in the water solubility of the GF impurities with the same molecular structure. The MIC values recorded for GF ranged from 0.0028 to 0.0172 mM, except for T. Mentagrophytes TME34. Notably, the micellar solubilization of GF did not increase its antifungal activity, which could be related to the high binding constant between GF and P407.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

Aggarwal N, Shishu G, Khurana R. Formulation, characterization and evaluation of an optimized microemulsion formulation of griseofulvin for topical application. Colloids Surf. B Biointerfaces. 2013;105:158-166.

Aitipamula S, Vangala VR, Chow PS, Tan RBH. Cocrystal hydrate of an antifungal drug, griseofulvin, with promising physicochemical properties. Cryst Growth Des. 2012;12(12):5858-5863.

Alexandridis P, Athanassiou V, Fukuda S, Hatton TA. Surface activity of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) copolymers. Langmuir. 1994;10(8):2604-2612.

Alexandridis P, Olsson U, Lindman B. A record nine different phases (four cubic, two hexagonal, and one lamellar lyotropic liquid crystalline and two micellar solutions) in a ternary isothermal system of an amphiphilic block copolymer and selective solvents (water and oil). Langmuir . 1998;14(10):2627-2638.

Aly R, Bayles CI, Oakes RA, Bibel DJ, Maibach HI. Topical griseofulvin in the treatment of dermatophytoses. Clin Exp Dermatol. 1994;19(1):43-46.

Al-Obaidi H, Kowalczyk RM, Kalgudi R, Zariwala MG. Griseofulvin solvate solid dispersions with synergistic effect against fungal biofilms. Colloids Surf. B. 2019;184:1-10.

Amidon GL, Lennernäs H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12(3):413-420.

Arida AI, Al-Tabakha MM, Hamoury HAJ. Improving the high variable bioavailability of griseofulvin by SEDDS. Chem Pharm Bull. 2007;55(12):1713-1719.

Bodratti AM, Alexandridis P. Formulation of Poloxamers for Drug Delivery. J Funct Biomater. 2018;9(11):1-24.

Buckley ST, Frank KJ, Fricker G, Brandl M. Biopharmaceutical classification of poorly soluble drugs with respect to ‘‘enabling formulations’’. Eur J Pharm Sci. 2013;50(1):8-16.

Chen Y, Liu C, Chen Z, Su C, Hageman M, Hussain M, et al. Drug-polymer-water interaction and its implication for the dissolution performance of amorphous solid dispersions. Mol Pharm. 2015;12(2):576-589.

Chiappetta DA, Facorro G, Celis ER, Sosnik A. Synergistic encapsulation of the anti-HIV agent efavirenz within mixed poloxamine/poloxamer polymeric micelles. Nanomedicine: NBM. 2011;7(5):624-637.

Dhanaraju MD, Kumaran KS, Baskaran T, Moorthy MSR. Enhancement of bioavailability of griseofulvin by its complexation with β-cyclodextrin. Drug Dev Ind Pharm. 1998;24(6): 583-587.

Dumortier G, Grossiord JL, Agnely F, Chaumeil JC. A Review of Poloxamer 407 Pharmaceutical and Pharmacological Characteristics. Pharm Res . 2006;23(12):2709-2728.

Feng T, Pinal R, Carvajal MT. Process induced disorder in crystalline materials: differentiating defective crystals from the amorphous form of griseofulvin. J Pharm Sci. 2008;97(8):3207-21.

Finkelstein E, Amichai B, Grunwald MH. Griseofulvin and its uses. Int J Antimicrob Agents. 1996;6(4):189-194.

Fujioka Y, Kadono K, Fujie Y, Metsugi Y, Ogawara K, Higaki K, et al. Prediction of oral absorption of griseofulvin, a BCS class II drug, based on GITA model: Utilization of a more suitable medium for in-vitro dissolution study. J Control Release. 2007;119(2):222-228.

Garg RK, Sachdeva RK, Kapoor G. Comparison of crystalline and amorphous carriers to improve the dissolution profile of water insoluble drug itraconazole. Int J Pharm Bio Sci. 2013;4(1):934-948.

Ghaffari S, Varshosaz J, Saadat A, Atyabi F. Stability and antimicrobial effect of amikacin-loaded solid lipid nanoparticles. Int J Nanomed. 2011;6:35-43.

Gupta AK, Mays RR, Versteeg SG, Piraccini BM, Shear NH, Piguet V, et al. Tinea capitis in children: a systematic review of management. J Eur Acad Dermatol Venereol. 2018;32(12):2264-2274.

Ivanova R, Lindman B, Alexandridis P. Effect of glycols on the self-assembly of amphiphilic block copolymers in water. 1. Phase diagrams and structure identification. Langmuir . 2000a;16(8):3660-3675.

Ivanova R, Lindman B, Alexandridis P. Evolution in structural polymorphism of pluronic F127 Poly(ethyleneoxide)-Poly(propyleneoxide) block copolymer in ternary systems with water and pharmaceutically acceptable organic solvents: from “Glycols” to “Oils”. Langmuir . 2000b;16(23):9058-9069.

Kabanov AV, Alakhov VY. Pluronic® Block Copolymers in Drug Delivery: from Micellar Nanocontainers to Biological Response Modifiers. Crit Rev Ther Drug. 2002;19(1):1-73.

Kahsay G, Adegoke AO, Van Schepdael A, Adams E. Development and validation of a reversed phase liquid chromatographic method for analysis of griseofulvin and impurities. J Pharm Biomed Anal. 2013;80:9-17.

Kawabata Y, Wada K, Nakatani M, Yamada S, Onoue S. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: Basic approaches and practical applications. Int J Pharm. 2011;420(1):1-10.

Khadka P, Ro J, Kim H, Kim I, Kim JT, Kim H, et al. Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavailability. Asian J Pharm Sci . 2014;9(6):304-316.

Kim EJ, Chun MK, Jang JS, Lee IH, Lee KR, Choi HK. Preparation of a solid dispersion of felodipine using a solvent wetting method. Eur J Pharm Biopharm. 2006;64(2):200-205.

Lau BK, Wang Q, Sun W, Li L. Micellization to gelationof a triblock copolymer in water: Thermoreversibility and scaling. J Polym Sci B Polym Phys. 2004;42(10):2014-2025.

Lawrence MJ. Surfactant Systems: Their use in drug delivery. Chem Soc Rev. 1994;(6):417-424.

Lee KR, Kim EJ, Seo SW, Choi HK. Effect of Poloxamer on the Dissolution of Felodipine and Preparation of Controlled Release Matrix Tablets Containing Felodipine. Arch Pharm Res . 2008;31(8):1023-1028.

Lee K, Shin SC, Oh I. Fluorescence Spectroscopy Studies on Micellization of Poloxamer 407 Solution. Arch Pharm Res . 2003;26(8):653-658.

Lin Y, Alexandridis P. Temperature-dependent adsorption of pluronic F127 block copolymers onto carbon black particles dispersed in aqueous media. J Phys Chem B. 2002;106(42):10834-10844.

Liveri MLT, Licciardi M, Sciascia L, Giammona G, Cavallaro G. Peculiar mechanism of solubilization of a sparingly water soluble drug into polymeric micelles. Kinetic and Equilibrium Studies. J Phys Chem B . 2012;116(16):5037-5046.

Mortensen K. Structural properties of self-assembled polymeric aggregates in aqueous solutions. Polym Adv Technol. 2001;12(1-2):2-22.

Noomen A, Hbaieb S, Parrot-Lopez H, Kalfat R, Hatem F, Amdouni N, et al. Emulsions of β-cyclodextrins grafted to silicone for the transport of antifungal drugs. Mater Sci Eng C. 2008;28(5-6):705-715.

Odds FC, Brown AJP, Gow, NAR. Antifungal agents: mechanisms of action. TRENDS Microbiol. 2003;11(6):272-279.

Oliveira CP, Ribeiro MENP, Ricardo NMPS, Souza TVP, Moura CL, Chaibundit C, et al. The effect of water-soluble polymers, PEG and PVP, on the solubilisation of griseofulvin in aqueous micellar solutions of Pluronic F127. Int J Pharm . 2011;421(2):252-257.

Rekatas CJ, Mai SM, Crothers M, Quinn M, Collet JH, Attwood D, et al. The effect of hydrophobe chemical structure and chain length on the solubilization of griseofulvin in aqueous micellar solutions of block copoly(oxyalkylene)s. Phys Chem Chem Phys. 2001;3(21):4769-4773.

Ren J, Fang Z, Yao L, Dahmani FZ, Yin L, Zhou J, et al. A micelle-like structure of poloxamer-methotrexate conjugates as nanocarrier for methotrexate delivery. Int J Pharm . 2015;487(1-2):177-186.

Ribeiro MENP, Cavalcante IM, Ricardo NMPS, Mai SM, Attwood D, Yeates SG, Booth C. Solubilisation of griseofulvin in aqueous micellar solutions of diblock copolymers of ethylene oxide and 1,2-butylene oxide with lengthy B-blocks. Int J Pharm . 2009;369(1-2):196-198.

Rowe R, Sheskey P, Owen S. Pharmaceutical Handbook of Pharmaceutical Excipients, 5th ed. London: Pharmaceutical Press; 2005.

Sezgin Z, Yüksel N, Baykara T. Preparation and characterization of polymeric micelles for solubilization of poorly soluble anticancer drugs. Eur J Pharm Biopharm . 2006;64(3):261-268.

Shishu G, Aggarwal N. Preparation of hydrogels of griseofulvin for dermal application. Int J Pharm . 2006;326(1-2):20-24.

Suksiriworapong J, Rungvimolsin T, A-gomol A, Junyaprasert VB, Chantasart D. Development and Characterization of Lyophilized Diazepam-Loaded Polymeric Micelles. AAPS PharmSciTech. 2014;15(1):52-64.

Takagi T, Ramachandran C, Bermejo M, Yamashita S, Yu LX, Amidon GL. A Provisional Biopharmaceutical Classification of the Top 200 Oral Drug Products in the United States, Great Britain, Spain, and Japan. Mol Pharm . 2006;3(6):631-643.

Torchilin VP. Structure and design of polymeric surfactant-based drug delivery systems. J Control Release . 2001;73(2-3):137-172.

Townley ER. Griseofulvin, in: K. Florey, editor. Analytical Profiles of Drug Substances. New York: Academic Press; 1979. p. 219-249.

Downloads

Publicado

2022-11-23

Edição

Seção

Original Article

Como Citar

Poloxamer-enhanced solubility of griseofulvin and its related antifungal activity against Trichophyton spp. (2022). Brazilian Journal of Pharmaceutical Sciences, 58. https://doi.org/10.1590/s2175-97902022e19731