Development of fluorescent- and radio-traceable T1307-polymeric micelles as biomedical agents for cancer diagnosis

biodistribution on 4T1 tumor-bearing mice

Autores

  • Nicole Valerie Lecot Laboratorio de Técnicas Nucleares Aplicadas a Bioquímica y Biotecnología, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Uruguay
  • Gonzalo Rodríguez Grupo de Química Orgánica Medicinal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Uruguay
  • Valentina Stancov Grupo de Química Orgánica Medicinal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Uruguay
  • Marcelo Fernández Laboratorio de Experimentación Animal, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Uruguay
  • Mercedes González Grupo de Química Orgánica Medicinal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Uruguay
  • Romina Glisoni Departamento de Tecnología Farmacéutica, Cátedra de Tecnología Farmacéutica II, CONICET-Instituto de Nanobiotecnología (NANOBIOTEC), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
  • Pablo Cabral Área de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Uruguay
  • Hugo Cerecetto Grupo de Química Orgánica Medicinal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Uruguay; Área de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Uruguay https://orcid.org/0000-0003-1256-3786

DOI:

https://doi.org/10.1590/s2175-97902022e191055

Palavras-chave:

Amphiphilic polymeric micelles, T1307, BODIPY, 99mTc, In vivo biodistribution, Cancer diagnosis

Resumo

In recent years, nanocarriers have been studied as promising pharmaceutical tools for controlled drug-delivery, treatment-efficacy follow-up and disease imaging. Among them, X-shaped amphiphilic polymeric micelles (Tetronic®, poloxamines) display great potential due to their biocompatibility and non-toxic effects, among others. In the present work, polymeric micelles based on the T1307 copolymer were initially decorated with a 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY)-fluorophore in order to determinate its in vivo biodistribution on 4T1 tumor-bearing mice. However, unfavorable results with this probe led to two different strategies. On the one hand, the BODIPY-micelle-loaded, L-T1307-BODIPY, and on the other hand, the 99mTc-micelle-radiolabeled, L-T1307- 99m Tc, were analyzed separately in vivo. The results indicated that T1307 accumulates mainly in the stomach, the kidneys, the lungs and the tumor, reaching the maximum organ-accumulation 2 hours after intravenous injection. Additionally, and according to the results obtained for L-T1307- 99m Tc, the capture of the polymeric micelles in organs could be observed up to 24 hours after injection. The results obtained in this work were promising towards the development of new radiotracer agents for breast cancer based on X-shaped polymeric micelles.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

Acharya G, Mitra AK, Cholkar K. Nanosystems for diagnostic imaging, biodetectors, and biosensors. In: Mitra A, Cholkar K, Mandal A, editors. Emerging nanotechnologies for diagnostics. Drug Delivery and Medical Devices. Amsterdam: Elsevier, 2017, p. 217-248.

Araujo L, Sheppard M, Löbenberg R, Kreuter J. Uptake of PMMA nanoparticles from the gastrointestinal tract after oral administration to rats: modification of the body distribution after suspension in surfactant solutions and in oil vehicles. Int J Pharm. 1999;176(2):209-224.

Calzada V, Moreno M, Newton J, González J, Fernández M, Gambini JP, et al. Development of new PTK7-targeting aptamer-fluorescent and -radiolabelled probes for evaluation as molecular imaging agents: Lymphoma and melanoma in vivo proof of concept. Bioorg Med Chem. 2017;25(3):1163-1171.

Chiang PC, Gould S, Nannini M, Qin A, Deng Y, Arrazate A, et al. Nanosuspension delivery of paclitaxel to xenograft mice can alter drug disposition and anti-tumor activity. Nanoscale Res Lett. 2014;9(1):156.

Chiappetta DA, Sosnik A. Poly(ethylene oxide)-poly(propylene oxide) block copolymer micelles as drug delivery agents: Improved hydrosolubility, stability and bioavailability of drugs. Eur J Pharm Biopharm. 2007;66(3):303-317.

Cohn D, Sosnik A, Levy A. Improved reverse thermo-responsive polymeric systems. Biomaterials. 2003;24(21):3707-3714.

Cuestas ML, Glisoni RJ, Mathet V, Sosnik A. Lactosylated-poly(ethylene oxide)-poly(propylene oxide) block copolymers for potential active drug targeting: Synthesis and physicochemical and self-aggregation characterization. J Nanopart Res. 2013;15(1):1-21.

Dávila B, Sánchez C, Fernández M, Cerecetto H, Lecot N, Cabral P, et al. Selective hypoxia-cytotoxin 7-fluoro-2-aminophenazine 5,10-dioxide: toward “candidate-to-drug” stage in the drug-development pipeline. ChemistrySelect. 2019;4:9396-9402.

Eawsakul K, Chinavinijkul P, Saeeng R, Chairoungdua A, Tuchinda P, Nasongkla N. Preparation and characterizations of RSPP050-loaded polymeric micelles using poly(ethylene glycol)-b-poly(ε-caprolactone) and poly(ethylene glycol)-b-poly(D,L-lactide). Chem Pharm Bul. 2017;65(6):530-537.

Fernández S, Berchesi A, Tejería E, Sanz I, Cerecetto H, González M, et al. Preparation and biological evaluation of (99m)Tc-labelled phenazine dioxides as potential tracers for hypoxia imaging. Curr Radiopharm. 2015;8(1):56-61.

Gao JL, Shui YM, Jiang W, Huang EY, Shou QY, Ji X, et al. Hypoxia pathway and hypoxia-mediated extensive extramedullary hematopoiesis are involved in ursolic acid’s anti-metastatic effect in 4T1 tumor bearing mice. Oncotarget. 2016;7(44):71802-71816.

García MF, Gallazzi F, Junqueira MS, Fernández M, Camacho X, Mororó JDS, et al. Synthesis of hydrophilic HYNIC-[1,2,4,5]tetrazine conjugates and their use in antibody pretargeting with 99mTc. Org Biomol Chem. 2018;16(29):5275-5285.

Giglio J, Patsis G, Pirmettis I, Papadopoulos M, Raptopoulou C, Pelecanou M, et al. Preparation and characterization of technetium and rhenium tricarbonyl complexes bearing the 4-nitrobenzyl moiety as potential bioreductive diagnostic radiopharmaceuticals. In vitro and in vivo studies. Eur J Med Chem. 2008;43(4):741-748.

Glisoni RJ, Chiappetta DA, Moglioni AG, Sosnik A. Novel 1-indanone thiosemicarbazone antiviral candidates: Aqueous solubilization and physical stabilization by means of cyclodextrins. Pharm Res. 2012;29(3):739-755.

Glisoni RJ, García-Fernández MJ, Pino M, Gutkind G, Moglioni AG, Alvarez-Lorenzo C, et al. β-Cyclodextrin hydrogels for the ocular release of antibacterial thiosemicarbazones. Carbohydr Polym. 2013;93(2):449-457.

Glisoni RJ, Sosnik A. Encapsulation of the antimicrobial and immunomodulator agent nitazoxanide within polymeric micelles. J Nanosci Nanotechnol. 2014a;14(6):4670-4682.

Glisoni RJ, Sosnik A. Novel poly(ethyleneoxide)-b-poly(propyleneoxide) copolymer-glucose conjugate by the microwave-assisted ring opening of a sugar lactone. Macromol Biosci. 2014b;14(11):1639-1651.

González-López J, Álvarez-Lorenzo C, Taboada P, Sosnik A, Sandez-Macho I, Concheiro A. Self-associative behavior and drug-solubilizing ability of poloxamine (Tetronic) block copolymers. Langmuir. 2008;24(19):10688-10697.

Jiao L, Yu C, Li J, Wang Z, Wu M, Hao E. Beta-formyl-BODIPYs from the Vilsmeier-Haack reaction. J Org Chem. 2009;74(19):7525-7528.

Lv S, Mingqiang L, Zhaohui T, Wantong S, Hai S, Huaiyu L, et al. Doxorubicin-loaded amphiphilic polypeptide-based nanoparticles as an efficient drug delivery system for cancer therapy. Acta Biomater. 2013;9(12):9330-9342.

Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 2000;65(1-2):271-284.

Marques Grallert SR, De Oliveira Rangel-Yagui C, Mesquita Pasqualoto KF, Costa Tavares L. Polymeric micelles and molecular modeling applied to the development of radiopharmaceuticals. Braz J Pharm Sci. 2012;48(1):1-16.

Mi P, Cabral H, Kokuryo D, Rafi M, Terada Y, Aoki I, et al. Gd-DTPA-loaded polymer-metal complex micelles with high relaxivity for MR cancer imaging. Biomaterials. 2013;34(2):492-500.

Moghimi SM, Hunter AC. Poloxamers and poloxamines in nanoparticle engineering and experimental medicine. Trends Biotechnol. 2000;18(10):412-420.

Nardecchia S, Sánchez-Moreno P, de Vicente J, Marchal JA, Boulaiz H. Clinical trials of thermosensitive nanomaterials: An overview. Nanomaterials. 2019;9(2):E191.

Oda CMR, Fernandes RS, de Araújo Lopes SC, Oliveira MC, Cardoso VN, Santos DM, et al. Synthesis, characterization and radiolabeling of polymeric nano-micelles as a platform for tumor delivering. Biomed Pharmacother. 2017;89:268-275.

Rodríguez G, Nargoli J, López A, Moyna G, Álvarez G, Fernández M, et al. Synthesis and in vivo proof of concept of a BODIPY-based fluorescent probe as a tracer for biodistribution studies of a new anti-Chagas agent. RSC Adv. 2017;7(13):7983-7989.

Töster SD, Müller U, Kreuter J. Modification of the body distribution of poly(methylmethacrylate) nanoparticles in rats by coating with surfactants. Int J Pharm . 1990;61(1-2):85-100.

Wube AA, Hüfner A, Thomaschitz C, Blunder M, Kollroser M, Bauer R, et al. Design, synthesis and antimycobacterial activities of 1-methyl-2-alkenyl-4(1H)-quinolones. Bioorg Med Chem . 2011;19(1):567-579.

Downloads

Publicado

2022-11-23

Edição

Seção

Original Article

Como Citar

Development of fluorescent- and radio-traceable T1307-polymeric micelles as biomedical agents for cancer diagnosis: biodistribution on 4T1 tumor-bearing mice. (2022). Brazilian Journal of Pharmaceutical Sciences, 58. https://doi.org/10.1590/s2175-97902022e191055

Dados de financiamento