Zofenopril antitumor activity in mice bearing Ehrlich solid carcinoma

Modulation of PI3K/AKT signaling pathway

Autores

DOI:

https://doi.org/10.1590/s2175-97902022e19922

Palavras-chave:

Zofenopril, Angiotensin II, Cancer, PI3K/Akt, Hydrogen sulfide, Cystathionine beta synthase

Resumo

Angiotensin-II (AgII) is thought to be crucial for tumor growth and progression. Moreover, hydrogen sulfide (H2S) performs a controversial action in cancer pathology. Zofenopril (ZF) is an angiotensin-converting enzyme (ACE) inhibitor with H2S donating properties. Hence, this study aims at investigating the tumor suppressor activity of ZF and elucidating the involved trajectories in Ehrlich’s solid tumor (EST)-bearing mice. EST was induced by the intradermal injection of Ehrlich’s ascites carcinoma cells into femoral region. All parameters were assessed after 28 days post-inoculation or one-week thereafter. ZF treatment resulted in significant reduction of tumor weights with marked decrease in IL-6 and VEGF levels in serum, and tumor Ag II and CEA contents. Additionally, the administration of ZF downregulated the tumor gene expression of cyclin-D, ACE-1, and Bcl2 and upregulated the proapoptotic gene, BAX. Moreover, ZF increased CBS gene expression, which is a major contributor to cellular H2S production. In addition, ZF was able to reduce the protein expression of PI3K, pAKT, pGSK-3β, and NFκB. Our study has provided novel insights into the possible mechanisms by which ZF may produce its tumor defeating properties. These intersecting trajectories involve the interference between PI3K/Akt and CBS signaling pathways.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

Abd-Alhaseeb MM, Zaitone SA, Abou-El-Ela SH, Moustafa YM. Olmesartan potentiates the anti-angiogenic effect of sorafenib in mice bearing ehrlich’s ascites carcinoma: role of angiotensin (1-7). PLoS One. 2014;22:9(1):e85891.

Ahmad A, Biersack B, Li Y, Kong D, Bao B, Schobert R, et al. Targeted regulation of PI3K/Akt/mTOR/NF-κB signaling by indole compounds and their derivatives: mechanistic details and biological implications for cancer therapy. Anticancer Agents Med Chem. 2013;13(7):1002-1013.

Araújo WF, Naves MA, Ravanini JN, Schor N, Teixeira VPC. Renin-angiotensin system (RAS) blockade attenuates growth and metastatic potential of renal cell carcinoma in mice. Urol. Oncol. 2015;33(9):389.e1-7

Atif F, Yousuf S, Stein DG. Anti-tumor effects of progesterone in human glioblastoma multiforme: Role of PI3K/Akt/mTOR signaling. J Steroid Biochem Mol Biol. 2015;146:62-73.

Attoub S, Gaben AM, Al-Salam S, Al Sultan MAH, John A, Nicholls MG, et al. Captopril as a potential inhibitor of lung tumor growth and metastasis. Ann N Y Acad Sci. 2008;1138:65-72.

Avila MA, Berasain C, Torres L, Martín-Duce A, Corrales FJ, Yang H, et al. Reduced mRNA abundance of the main enzymes involved in methionine metabolism in human liver cirrhosis and hepatocellular carcinoma. J Hepatol. 2000;33(6):907-914.

Bancroft JD, Gamble M. Theory and practice of histological techniques. 2008; Churchill Livingstone/Elsevier.

Bucci M, Vellecco V, Cantalupo A, Brancaleone V, Zhou Z, Evangelista S, et al. Hydrogen sulfide accounts for the peripheral vascular effects of zofenopril independently of ACE inhibition. Cardiovasc Res. 2014;102(1):138-147.

CAI W, WANG M, MOORE P, JIN H, YAO T, ZHU Y. The novel proangiogenic effect of hydrogen sulfide is dependent on Akt phosphorylation. Cardiovasc Res . 2007;76(1):29-40.

Calixto-Campos C, Zarpelon AC, Corrêa M, Cardoso RDR, Pinho-Ribeiro FA, Cecchini R, et al. The ehrlich tumor induces pain-like behavior in mice: a novel model of cancer pain for pathophysiological studies and pharmacological screening. Biomed Res Int. 2013;2013:624815.

Cortez-Retamozo V, Etzrodt M, Newton A, Ryan R, Pucci F, Sio SWW, et al. Angiotensin II drives the production of tumor-promoting macrophages. immunity. 2013;38(2):296-308.

Crowell JA, Steele VE, Fay JR. Targeting the AKT protein kinase for cancer chemoprevention. Mol Cancer Ther. 2007;6(8):2139-2148.

Dominska K, Kowalska K, Matysiak ZE, Płuciennik E, Ochȩdalski T, Piastowska-Ciesielska AW. Regulation of mRNA gene expression of members of the NF-κB transcription factor gene family by angiotensin II and relaxin 2 in normal and cancer prostate cell lines. Mol Med Rep. 2017;15(6):4352-4359.

Donnarumma E, Ali MJ, Rushing AM, Scarborough AL, Bradley JM, Organ CL, et al. Zofenopril protects against myocardial ischemia-reperfusion injury by increasing nitric oxide and hydrogen sulfide bioavailability. J Am Heart Assoc. 2016;5(7):1-17.

Hellmich MR, Coletta C, Chao C, Szabo C. The therapeutic potential of cystathionine β-synthetase/hydrogen sulfide inhibition in cancer. Antioxid Redox Signal. 2015;22(5):424-448.

Kim S, Iwao H. Molecular and cellular mechanisms of angiotensin II-mediated cardiovascular and renal diseases. Pharmacol Rev. 2000;52(1):11-34.

Lagoutte E, Mimoun S, Andriamihaja M, Chaumontet C, Blachier F, Bouillaud F. Oxidation of hydrogen sulfide remains a priority in mammalian cells and causes reverse electron transfer in colonocytes. Biochim Biophys Acta - Bioenerg. 2010;1797(8):1500-1511.

Manna P, Jain SK. Hydrogen Sulfide and l-Cysteine Increase Phosphatidylinositol 3,4,5-Trisphosphate (PIP3) and Glucose Utilization by Inhibiting Phosphatase and Tensin Homolog (PTEN) Protein and Activating Phosphoinositide 3-Kinase (PI3K)/Serine/Threonine Protein Kinase (AKT)/Protein Kinase Cζ/λ (PKCζ/λ) in 3T3l1 Adipocytes. J Biol Chem. 2011;286(46):39848-39859.

Miyajima A, Kosaka T, Asano T, Asano T, Seta K, Kawai T, et al. Angiotensin II type I antagonist prevents pulmonary metastasis of murine renal cancer by inhibiting tumor angiogenesis. Cancer Res. 2002;62(15):4176-9.

Monti M, Terzuoli E, Ziche M, Morbidelli L. H 2 S dependent and independent anti-inflammatory activity of zofenoprilat in cells of the vascular wall. Pharmacol Res. 2016;113(Pt A):426-437.

Nakaigawa N, Sasaki T, Ishiguro H, Kubota Y, Uemura H, Kato S, et al. Antiproliferative activity of angiotensin II receptor blocker through cross-talk between stromal and epithelial prostate cancer cells. Mol Cancer Ther . 2006;4(11):1699-1709.

Nakamura K, Yaguchi T, Ohmura G, Kobayashi A, Kawamura N, Iwata T, et al. Involvement of local renin-angiotensin system in immunosuppression of tumor microenvironment. Cancer Sci. 2018;109(1):54-64.

Napoli C, Sica V, de Nigris F, Pignalosa O, Condorelli M, Ignarro L, et al. Sulfhydryl angiotensin-converting enzyme inhibition induces sustained reduction of systemic oxidative stress and improves the nitric oxide pathway in patients with essential hypertension. Am Heart J. 2004;148(1):172.

Neo JH, Ager EI, Angus PW, Zhu J, Herath CB, Christophi C. Changes in the renin angiotensin system during the development of colorectal cancer liver metastases. BMC Cancer. 2010;10:134.

Neo JH, Malcontenti-Wilson C, Muralidharan V, Christophi C. Effect of ACE inhibitors and angiotensin II receptor antagonists in a mouse model of colorectal cancer liver metastases. J Gastroenterol Hepatol. 2007;22(4):577-584.

Nowakowska M, Matysiak-Burzyńska Z, Kowalska K, Płuciennik E, Domińska K, Piastowska-Ciesielska AW. Angiotensin II promotes endometrial cancer cell survival. Oncol Rep. 2016;36(2):1101-1110.

Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29(9):e45.

Rodrigues-Ferreira S, Abdelkarim M, Dillenburg-Pilla P, Luissint A-C, Di-Tommaso A, Dé Rique Deshayes F, et al. Angiotensin II facilitates breast cancer cell migration and metastasis. Angiotensin II facil. Breast Cancer Cell Migr. Metastasis. PLoS ONE. 2012;7(4):e35667.

Sen N, Paul BD, Gadalla MM, Mustafa AK, Sen T, Xu R, et al. Hydrogen sulfide-linked sulfhydration of NF-κB mediates its antiapoptotic actions. Mol Cell. 2012;45(1):13-24.

Song M, Bode AM, Dong Z, Lee M.-H. AKT as a therapeutic target for cancer. Cancer Res . 2019;79(6):1-14.

Szabo C, Coletta C, Chao C, Módis K, Szczesny B, Papapetropoulos A, et al. Tumor-derived hydrogen sulfide, produced by cystathionine-β-synthase, stimulates bioenergetics, cell proliferation, and angiogenesis in colon cancer. Proc Natl Acad Sci USA. 2013a;110(30):12474-12479.

Szabo C, Ransy C, Módis K, Andriamihaja M, Murghes B, Coletta C, et al. Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part I. Biochemical and physiological mechanisms. Br J Pharmacol. 2013b;171(8):2099-2122.

Touyz RM, Berry C. Recent advances in angiotensin II signaling. Braz J Med Biol Res. = Rev Bras Pesqui Medicas Biol. 2002;35(9):1001-1015.

Wilsdorf T, Gainer JV, Murphey LJ, Vaughan DE, Brown NJ. Angiotensin-(1-7) does not affect vasodilator or TPA responses to bradykinin in human forearm. Hypertens. 2001;37(4):1136-40.

Yan X, Hui Y, Hua Y, Huang L, Wang L, Peng F, et al. EG-VEGF silencing inhibits cell proliferation and promotes cell apoptosis in pancreatic carcinoma via PI3K/AKT/mTOR signaling pathway. Biomed Pharmacother. 2019;109:762-769.

Zhang J, Yu XH, Yan YG, Wang C, Wang WJ. PI3K/Akt signaling in osteosarcoma. Clin Chim Acta. 2015;444:182-192.

Zhang S, Wang Y. Telmisartan inhibits NSCLC A549 cell proliferation and migration by regulating the PI3K/AKT signaling pathway. Oncol Lett. 2018;15(4):5859-5864.

Zhao Y, Wang H, Li X, Cao M, Lu H, Meng Q, et al. Ang II-AT1R increases cell migration through PI3K/AKT and NF-κB pathways in breast cancer. J Cell Physiol. 2014;229(11):1855-1862.

Zhu H, Blake S, Chan KT, Pearson RB, Kang J. Cystathionine ß-synthase in physiology and cancer. Biomed Res Int . 2018;3205125.

Zhu Q, Yang J, Han S, Liu J, Holzbeierlein J, Thrasher JB, et al. Suppression of glycogen synthase kinase 3 activity reduces tumor growth of prostate cancer in vivo. Prostate. 2011;71(8):835-845.

Downloads

Publicado

2022-11-23

Edição

Seção

Original Article

Como Citar

Zofenopril antitumor activity in mice bearing Ehrlich solid carcinoma: Modulation of PI3K/AKT signaling pathway. (2022). Brazilian Journal of Pharmaceutical Sciences, 58. https://doi.org/10.1590/s2175-97902022e19922