Antinociception Induced by Moringa Stenopetela (Baker f.) Cufod. Leaves Extract and Possible Mechanisms of Action

Authors

  • Muna Jemal HUSSEIN Anadolu University, Health Sciences Institute, Department of Pharmacology, Eskisehir, Turkey
  • Nurcan Bektas Anadolu University, Faculty of Pharmacy, Department of Pharmacology, Eskisehir, Turkey https://orcid.org/0000-0003-2597-6184
  • Yusuf Ozturk Anadolu University, Faculty of Pharmacy, Department of Pharmacology, Eskisehir, Turkey
  • Rana Arslan Anadolu University, Faculty of Pharmacy, Department of Pharmacology, Eskisehir, Turkey

DOI:

https://doi.org/10.1590/s2175-97902020000118578

Keywords:

Moringa stenopetala, Pain, Adrenoceptor, Serotonin receptor, Opioid receptor

Abstract

Moringa stenopetala (Baker f.) Cufod., is an endemic species growing in the south of Ethiopia. M. stenopetala is often consumed as food and used in traditional medicine and it has also been traditionally used for relieving of pain in Ethiopia. This study aimed to investigate the antinociceptive effect and mechanisms of action of M. stenopetala leaves methanol extract in mice.

The per-oral doses of 50, 100, and 200 mg/kg of M. stenopetala extract were tested for antinociceptive action by using hot-plate, tail-immersion, and writhing tests. The possible mechanisms of in the antinociceptive action were investigated by pre-treatment with 5 mg/kg naloxone (non-selective opioid antagonist), 1 mg/kg ketanserin (5-HT2A/2C receptor antagonist), and 1 mg/kg yohimbine (α2 adrenoceptor antagonist). The methanol extract of M. stenopetala showed antinociceptive effect in all tests. The significant involvement of 5-HT2A/2C receptors and α2 adrenoceptors in antinociception induced by M. stenopetala extract in the hot-plate and tail-immersion tests, as well as significant contribution of opioid receptors and α2 adrenoceptors in writhing test, were identified.

In conclusion, these findings demonstrate that the methanol extract of M. stenopetala has potential in pain management. Thisstudywillcontributetonewtherapeuticapproachesandprovideguidancefornewdrug development studies.

Downloads

Download data is not yet available.

References

Abdull Razis AF, Ibrahim MD, Kntayya SB. Health Benefits of Moringa oleifera. Asian Pac J Cancer Prev. 2014;15(20): 8571-8576.

Al-Hasani R, Bruchas MR. Molecular mechanisms of opioid receptor-dependent signaling and behavior. Anesthesiology: J Am Soc Anesthesiol. 2011;115(6):1363-1381.

Binder W, Mousa SA, Sitte N, Kaiser M, Stein C, Schafer M. Sympathetic activation triggers endogenous opoid release and analgesia within peripheri inflammed tissue. Eur J Neorosci. 2004;20(1):92-100.

Cáceres A, Saravia A, Rizzo S, Zabala L, De Leon E, Nave F. Pharmacologic properties of Moringa oleifera. 2: Screening for antispasmodic, antiinflammatory and diuretic activity. J Ethnopharmacol. 1992;36(3):233-237.

Chian S, Thapa R, Chi Z, Wang XJ, Tang X. Luteolin inhibits the Nrf2 signaling pathway and tumor growth in vivo. Biochem Biophys Res Commun. 2014;447(4):602-608.

Coelho LP, Reis PA, de Castro FL, Gayer CR, da Silva Lopes C, da Costa e Silva MC et al., Antinociceptive properties of ethanolicextract and fractions of Pterodon pubescens Benth. seeds. J Ethnopharmacol. 2005;98(1-2):109-116.

Daba M. Miracle Tree: A review on multi-purposes of moringa oleifera and its implication for climate change mitigation. J. Earth Sci Clim Change. 2016;7:1-5.

Eddy NB, Leimback D. Synthetic analgesics II. Dithienylbutenyl and dithienylbutylamines. J Pharmacol Exp Ther. 1953;107(3):385-93.

Flores JA, El Banoua F, Galán-Rodriguez B, Fernandez-Espejo E. Opiate anti-nociception is attenuated following lesion of large dopamine neurons of the periaqueductal grey: critical role for D1 (not D2) dopamine receptors. Pain. 2004;110(1-2):205-214.

Geremew H, Shibeshi W, Tamiru W, Engdawork E. Experimental Evaluation of Analgesic and Anti-inflammatory Activity of 80% Methanolic Leaf Extract of Moringa stenopetala Bak. F. in Mice. Ethiopian Pharm J. 2015;31(1): 15-26.

Ghebreselassie D, Mekonnen Y, Gebru G, Ergete W, Huruy K. The effects of Moringa stenopetala on blood parameters and histopathology of liver and kidney in mice. Ethiop J Health Dev. 2011;25(1):51-57.

Gawade S. Acetic acid induced painful endogenous infliction in writhing test on mice. J Pharmacol Pharmacother. 2012;3(4):348. doi: 10.4103/0976-500X.103699.

» https://doi.org/10.4103/0976-500X.103699

Hara K, Haranishi Y, Terada T, Takahashi Y, Nakamura M, Sata T. Effects of intrathecal and intracerebroventricular administration of luteolin in a rat neuropathic pain model. Pharmacol Biochem Behav. 2014;125:78-84.

Hashemzaei M, Abdollahzadeh M, Iranshahi M, Golmakani E, Rezaee R, Tabrizian K. Effects of luteolin and luteolin- morphine co-administration on acute and chronic pain and sciatic nerve ligated-induced neuropathy in mice. J Complement Integr Med. 2017;14(1): pii: /j/jcim.2017.

Hernandez-Leon A, Fernández-Guasti A, González-Trujano ME. Rutin antinociception involves opioidergic mechanism and descending modulation of ventrolateral periaqueductal grey matter in rats. Eur J Pain. 2016;20(2):274-283.

Jaiswal D, Rai PK, Kumar A, Mehta S, Watal G. Effect of Moringa oleifera Lam. leaves aqueous extract therapy on hyperglycemic rats. J Ethnopharmacol. 2009;123(3):392-396.

Kanjhan R. Opioids and pain. Cli Exp Pharmacol Physiol. 1995;22(6-7):397-403.

Koster R, Anderson M, Beer EJ. Acetic acid for analgesic screening. Fed Proc. 1959;18:412.

Lapa Fda R, Gadotti VM, Missau FC, Pizzolatti MG, Marques MC, Dafré AL et al., Antinociceptive properties of the hydroalcoholic extract and the flavonoid rutin obtained from Polygala paniculata L. in mice. Basic Clin Pharmacol Toxicol. 2009;104(4):306-315.

Marks DM, Shah MJ, Patkar AA, Masand PS, Park GY, Pae CU. Serotonin-norepinephrine reuptake inhibitors for pain control:premise and promise. Curr Neuropharmacol. 2009;7(4):331-336.

Mbikay M. Therapeutic potential of Moringa oleifera leaves in chronic hyperglycemia and dyslipidemia: a review. Front Pharmacol. 2012;3:24. doi: 10.3389/fphar.2012.00024.

» https://doi.org/10.3389/fphar.2012.00024

Mekonnen Y., Gessesse A. Documentation on the use of Moringa Stenopetala and its possible antileshimanial and antifertility effects. SINET: Ethiopian J Sci. 1998;21(2): 287-295.

Melaku Y, Arnold N, Schmidt J, Dagne E. Analysis of the husk and kernel of the seeds of Moringa stenopetala. Bull Chem Soc Ethiop. 2017;31(1):107-113.

Mengistu M, Abebe Y, Mekonnen Y, Tolessa T. In vivo and in vitro hypotensive effect of aqueous extract of Moringa stenopetala. Afr Health Sci. 2012;12(4):545-551.

Merskey H, Bogduk N. Classification of chronic pain. Descriptions of chronic pain syndromes and definition of pain terms. 2nd edition. Seattle: IASP Press; 1994. p. 103-111.

Milind P, Monu Y. Laboratory models for screening analgesics. Int Res J Pharm. 2013;4(1):15-19.

Mohammed S, Manan FA. Analysis of total phenolics, tannins and flavonoids from Moringa oleifera seed extract. J Chem Pharm Res. 2015;7(1):132-135.

Muhammad AA, Pauzi NA, Arulselvan P, Abas F, Fakurazi S. In Vitro Wound Healing Potential and Identification of Bioactive Compounds from Moringa oleifera Lam. Biomed Res Int. 2013; Article ID 974580, 10 pages.

Nazari QA, Kume T, Takada-Takatori Y, Izumi Y, Akaike A. Protective effect of luteolin on an oxidative-stress model induced by microinjection of sodium nitroprusside in mice. J Pharmacol Sci. 2013;122(2):109-117.

Pertovaara A, Almedia A. Endogenous Pain Modulation: Descending inhibitory systems. In: Cervero F and Jensen TS. (eds), Handbook of clinical neurology. Elsevier, USA, pp. 179-192.

Petrovska BB. Historical review of medicinal plants’ usage. Pharmacogn Rev. 2012;6(11):1-5.

Sawynok J. Topical and peripherally acting analgesics. Pharmacol Rev. 2003;55(1):1-20.

Schaible HG. Peripheral and central mechanisms of pain generation. Handb Exp Pharmacol. 2007;177:3-28.

Schmauss C, Yaksh TL. In vivo studies on spinal receptor systems mediating antinociception II. Pharmacological profiles suggesting a diff erential association of mu, delta and kappa receptors with visceral chemical and cutaneous thermal stimuli in the rat. J Pharmacol Exp Ther. 1984;228(1):1-12.

Seid MA. Medicinal and dietary role of Moringa stenopetala (Bak.f.) Cuf. In South Ethiopia. AJAST. 2013;1(1):1-6.

Seifu E. Actual and Potential Applications of Moringa stenopetala, Underutilized Indigenous Vegetable of Southern Ethiopia: A Review. Int J Agric Food Res. 2014;3(4):8-19.

Sengupta R, Sonali DS, Madhuri AH. Analgesic and anti- inflammatory plants: an updated review. Int j Pharm Sci Rev Res. 2012;12(2):114-119.

Singleton VL, Orthofer R, Lamuela-Raventos RM. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. Academic press. 1999;299:152-178.

Sommer C. Serotonin in pain and pain control. In: Christian Müller and Barry Jacobs (eds.) Handbook of Behavioral Neuroscience. Elsevier B.V., USA, 2010; pp.457-471.

Sun GB, Sun X, Wang M, Ye JX, Si JY, Xu HB et al., Oxidative stress suppression by luteolin-induced heme oxygenase-1 expression. Toxicol Appl Pharmacol. 2012;265(2):229-240.

Toma A, Makonnen E, Mekonnen Y, Debella A, Adisakwattana S. Antidiabetic activities of aqueous ethanol and n-butanol fraction of Moringa stenopetala leaves in streptozotocin-induced diabetic rats. BMC Complement Altern Med. 2015;15(1):242.

Vadivelu N, Mitra S, Hines RL. Peripheral opioid receptor agonists for analgesia: a comprehensive review. J Opioid Manag. 2011;7(1):55-68.

Wang Y, Chen P, Tang C, Wang Y, Li Y, Zhang H. Antinociceptive and anti-inflammatory activities of extract and two isolated flavonoids of Carthamus tinctorius. L. J Ethnopharmacol. 2014;151(2):944-50.

Willain Filho A, Cechinel Filho V, Olinger L, de Souza MM. Quercetin: further investigation of its antinociceptive properties and mechanisms of action. Arch Pharm Res. 2008;31(6):713-21.

Downloads

Published

2022-11-10

Issue

Section

Original Article

How to Cite

Antinociception Induced by Moringa Stenopetela (Baker f.) Cufod. Leaves Extract and Possible Mechanisms of Action. (2022). Brazilian Journal of Pharmaceutical Sciences, 58. https://doi.org/10.1590/s2175-97902020000118578

Funding data