Synergistic interaction of fluconazole/sodium bicarbonate on the inhibition of Candida glabrata phospholipase gene

Authors

DOI:

https://doi.org/10.1590/s2175-97902022e19897

Keywords:

Candida glabrata, Fluconazole, PLB, Sodium bicarbonate

Abstract

Candida glabrata infections are responsible for deaths of people globally. Fluconazole is known to be less effective against C. glabrata, which developed many strategies to evade being destroyed by fluconazole. To achieve enhanced efficacy of fluconazole against C. glabrata, the interaction of fluconazole with sodium bicarbonate was investigated using the CLSI guidelines. The efficacy of fluconazole alone and in combination with sodium bicarbonate was evaluated using the time-kill and phospholipase production assays. Eventually, the expression of PLB was assessed using semi-quantitative RT-PCR to investigate the inhibitory properties of fluconazole alone and in combination with sodium bicarbonate against C. glabrata. The fluconazole/sodium bicarbonate combination displayed synergistic and antagonistic effects (FICI= 0.375-4.25). In C. glabrata ATCC, SN 152, and SN 164, the fluconazole/sodium bicarbonate combination exhibited a significant fungicidal activity (p< 0.05) but antagonistic effect in the case of SN 283. With exception of SN 283, a significant reduction was noted in phospholipase production in clinical isolates of C. glabrata treated with fluconazole/sodium bicarbonate combination. The PLB was down-regulated significantly by 0.168-0.515 fold in C. glabrata treated with fluconazole/sodium bicarbonate. The results suggested fluconazole/sodium bicarbonate to have a potential synergistic interaction in C. glabrata, and the underlying mechanism may be associated with phospholipase gene.

Downloads

Download data is not yet available.

References

Alizadeh F, Khodavandi A, Zalakian S. Quantitation of ergosterol content and gene expression profile of ERG11 gene in fluconazole-resistant Candida albicans. Curr Med Mycol. 2017;3(1):13-19.

Alizadeh F, Khodavandi A, Esfandyari S, Nouripour-Sisakht S. Analysis of ergosterol and gene expression profiles of sterol Δ5,6-desaturase (ERG3) and lanosterol 14α-demethylase (ERG11) in Candida albicans treated with carvacrol. J Herbmed Pharmacol. 2018;7(2):79-87.

Amirrajab N, Badali H, Didehdar M, Afsarian MH, Mohammadi R, Lotfi N, et al. In vitro activities of six antifungal drugs against Candida glabrata isolates: an emerging pathogen. Jundishapur J Microbiol. 2016;9(5):e36638.

Barman A, Gohain D, Bora U, Tamuli R. Phospholipases play multiple cellular roles including growth, stress tolerance, sexual development, and virulence in fungi. Microbiol Res. 2018;209:55-69.

Campitelli M, Zeineddine N, Samaha G, Maslak S. Combination antifungal therapy: a review of current data. J Clin Med Res. 2017;9(6):451-6.

Carrillo-Muñoz AJ, Finquelievich J, Tur-Tur C, Eraso E, Jauregizar N, Quindós G, et al. Combination antifungal therapy: a strategy for the management of invasive fungal infections. Rev Esp Quimioter. 2014;27(3):141-58.

Charlet R, Pruvost Y, Tumba G, Istel F, Poulain D, Kuchler K, et al. Remodeling of the Candida glabrata cell wall in the gastrointestinal tract affects the gut microbiota and the immune response. Sci Rep. 2018;8(1):3316.

Chen S, Chen Y, Zhou YQ, Liu N, Zhou R, Peng JH, et al. Candida glabrata-induced refractory infectious arthritis: a case report and literature review. Mycopathologia. 2019;184(2):283-93.

Chong PP, Chin VK, Wong WF, Madhavan P, Yong VC, Looi CY. Transcriptomic and genomic approaches for unravelling Candida albicans biofilm formation and drug resistance-an update. Genes (Basel). 2018;9(11):pii:E540.

Deorukhkar SC, Saini S, Mathew S. Non-albicans Candida infection: an emerging threat. Interdiscip Perspect Infect Dis. 2014;2014:615958.

Dobay O, Laub K, Stercz B, Kéri A, Balázs B, Tóthpál A, et al. Bicarbonate inhibits bacterial growth and biofilm formation of prevalent cystic fibrosis pathogens. Front Microbiol. 2018;9:2245.

Fidel PL Jr, Vazquez JA, Sobel JD. Candida glabrata: review of epidemiology, pathogenesis, and clinical disease with comparison to C. albicans. Clin Microbiol Rev. 1999;12(1):80-96.

Figueiredo-Carvalho MHG, Ramos LS, Barbedo LS, de Oliveira JCA, Dos Santos ALS, Almeida-Paes R, Zancopé-Oliveira RM. Relationship between the antifungal susceptibility profile and the production of virulence-related hydrolytic enzymes in Brazilian clinical strains of Candida glabrata. Mediators Inflamm. 2017;2017:8952878.

Ho HL, Haynes K. Candida glabrata: new tools and technologies-expanding the toolkit. FEMS Yeast Res. 2015;15(6):pii:fov066.

Kalaiarasan K, Singh R, Chaturvedula L. Changing virulence factors among vaginal non-albicans Candida species. Indian J Med Microbiol. 2018;36(3):364-8.

Kasper L, Seider K, Hube B. Intracellular survival of Candida glabrata in macrophages: immune evasion and persistence. FEMS Yeast Res . 2015;15(5):fov042.

Khodavandi A, Alizadeh F, Aala F, Sekawi Z, Chong PP. In vitro investigation of antifungal activity of allicin alone and in combination with azoles against Candida species. Mycopathologia . 2010;169(4):287-95.

Khodavandi A, Alizadeh F, Jafarzadeh M. Synergistic interaction of fluconazole/ amphotericin B on inhibition of enzymes contributes to the pathogenesis of Candida tropicalis. Pharm Sci. 2018;24(4):280-90.

Khodavandi A, Alizadeh F, Abdolahi M, Jahangiri M. Differential expression levels of ALS, LIP, and SAP genes in Candida tropicalis treated with fluconazole alone and in combination with clotrimazole. J Reports Pharm Sci . 2019;8(1):28-33.

Kiasat N, Rezaei-Matehkolaei A, Mahmoudabadi AZ. Microsatellite typing and antifungal susceptibility of Candida glabrata strains isolated from patients with Candida vaginitis. Front Microbiol . 2019;10:1678.

Letscher-Bru V, Obszynski CM, Samsoen M, Sabou M, Waller J, Candolfi E. Antifungal activity of sodium bicarbonate against fungal agents causing superficial infections. Mycopathologia . 2013;175(1-2):153-8.

Li X, Yu C, Huang X, Sun S. Synergistic effects and mechanisms of budesonide in combination with fluconazole against resistant Candida albicans. PLoS One. 2016;11(12):e0168936.

Madhavan P, Jamal F, Pei CP, Othman F, Karunanidhi A, Ng KP. Comparative study of the effects of fluconazole and voriconazole on Candida glabrata, Candida parapsilosis and Candida rugosa biofilms. Mycopathologia . 2018;183(3):499-511.

Marchetti O, Entenza JM, Sanglard D, Bille J, Glauser MP, Moreillon P. Fluconazole plus cyclosporine: a fungicidal combination effective against experimental endocarditis due to Candida albicans. Antimicrob Agents Chemother. 2000;44(11):2932-8.

Makanjuola O, Bongomin F, Fayemiwo SA. An update on the roles of non-albicans Candida species in vulvovaginitis. J Fungi (Basel). 2018;4(4):pii:E121.

Mikdachi HF, Spann E. Candida glabrata fungemia following robotic total laparoscopic hysterectomy and bilateral salpingo-oophorectomy in a patient with recurrent vulvovaginitis: a case report. Cureus. 2019;11(3):e4349.

Najafi S, Yazdani R, Salari B, Tehrani HF, Kharrazi Fard MJ. Effect of sodium bicarbonate against Candida albicans in denture stomatitis: an in vitro study. J Dental Med. 2016;29(2):92-100.

Nami S, Aghebati-Maleki A, Morovati H, Aghebati-Maleki L. Current antifungal drugs and immunotherapeutic approaches as promising strategies to treatment of fungal diseases. Biomed Pharmacother. 2019;110:857-68.

Price MF, Wilkinson ID, Gentry LO. Plate method for detection of phospholipase activity in Candida albicans. Sabouraudia. 1982;20(1):7-14.

Pierce CG, Lopez-Ribot JL. Candidiasis drug discovery and development: new approaches targeting virulence for discovering and identifying new drugs. Expert Opin Drug Discov. 2013;8(9):1117-26.

Rodrigues CF, Rodrigues ME, Henriques M. Candida sp. infections in patients with diabetes mellitus. J Clin Med. 2019;8(1):pii:E76.

Rodríguez-Cerdeira C, Gregorio MC, Molares-Vila A, López-Barcenas A, Fabbrocini G, Bardhi B, et al. Biofilms and vulvovaginal candidiasis. Colloids Surf B Biointerfaces. 2019;174:110-25.

Treviño-Rangel RJ, Espinosa-Pérez JF, Villanueva-Lozano H, Soto-Quintana LA, Montoya AM, Luna-Rodríguez CE, et al. In vitro determination of hydrolytic enzymes and echinocandin susceptibility in mexican clinical isolates of Candida glabrata Sensu Stricto. Jundishapur J Microbiol . 2019;12(6):e85092.

Scheetz MH, Qi C, Warren JR, Postelnick MJ, Zembower T, Obias A, et al. In vitro activities of various antimicrobials alone and in combination with tigecycline against carbapenem-intermediate or -resistant Acinetobacter baumannii. Antimicrob Agents Chemother . 2007;51(5):1621-6.

Shao J, Xiong L, Zhang MX, Wang TM, Wang CZ. Report: synergism of sodium bicarbonate and baicalin against clinical Candida albicans isolates via broth microdilution method and checkerboard assay. Pak J Pharm Sci . 2019;32(3):1103-5.

Silva S, Negri M, Henriques M, Oliveira R, Williams DW, Azeredo J. Candida glabrata, Candida parapsilosis and Candida tropicalis: biology, epidemiology, pathogenicity and antifungal resistance. FEMS Microbiol Rev. 2012;36(2):288-305.

Sousa FA, Paradella TC, Koga-Ito CY, Jorge AO. Effect of sodium bicarbonate on Candida albicans adherence to thermally activated acrylic resin. Braz Oral Res. 2009;23(4):381-5.

White TJ, Bruns T, Lee S. Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds.) PCR Protocols: a guide to methods and applications, Academic Press, San Diego, 1990; pp. 315-322.

Xie C, Tang X, Xu W, Diao R, Cai Z, Chan HC. A host defense mechanism involving CFTR-mediated bicarbonate secretion in bacterial prostatitis. PLoS One . 2010;5:e15255.

Yang YL. Virulence factors of Candida species. J Microbiol Immunol Infect. 2003;36(4):223-8.

Downloads

Published

2022-11-23

Issue

Section

Original Article

How to Cite

Synergistic interaction of fluconazole/sodium bicarbonate on the inhibition of Candida glabrata phospholipase gene. (2022). Brazilian Journal of Pharmaceutical Sciences, 58. https://doi.org/10.1590/s2175-97902022e19897