Development and validation of analytical methods by HPLC for quality control of avermectins and milbemycins in bulk samples

Authors

  • Flávia Viana Avelar Dutra Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, São João del-Rei, Minas Gerais, Brazil
  • Leila Suleimara Teixeira Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, São João del-Rei, Minas Gerais, Brazil
  • Bruna Carneiro Pires Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, São João del-Rei, Minas Gerais, Brazil
  • Diego Hernando Ângulo Florez Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, São João del-Rei, Minas Gerais, Brazil
  • Roseane Andrade Teixeira Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, São João del-Rei, Minas Gerais, Brazil
  • Keyller Bastos Borges Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, São João del-Rei, Minas Gerais, Brazil https://orcid.org/0000-0003-1067-1919

DOI:

https://doi.org/10.1590/s2175-97902022e19604%20

Keywords:

Avermectins, Milbemycins, Quality control, Bulk samples

Abstract

This work aims to develop analytical methods using high-performance liquid chromatography
with a diode array detector (HPLC-DAD) for analysis and quantification of avermectins
(AVMs) and milbemycins (MBMs) in bulk samples. First, the methods were optimized and
some parameters such as temperature, flow rate, injection volume and mobile phase with
different proportions of solvents were evaluated. The best chromatographic conditions were
obtained using the Phenomenex® C18 (150 × 4.60 mm, 5 μm) column at a temperature of 20
°C, flow rate of 1.2 mL min–1, injection volume of 20 μL, and detection at 250 nm. Acetonitrile:
ultrapure water (87: 13, v/v) was used as mobile phase for moxidectin and eprinomectin, and
acetonitrile: methanol: ultrapure water (53: 35: 12, v/v/v) for abamectin and ivermectin. Under
these conditions satisfactory results were obtained, with appropriate limits of detection and
quantification, acceptable linearity, precision, accuracy, and robustness. These methods satisfy
the need for analytical methods for the multi-determination of MBMs and the B1a and B1b
forms of AVMs by HPLC-DAD, which can be considered simple, effective, innovative and
should aid in the development of the field.

Downloads

Download data is not yet available.

References

ABIEC (Associação Brasileira das Indústrias Exportadoras de Carnes). Série histórica de carne bonvina. Accessed in 17 July 2020. Available from: Available from: http://abiec.com.br/exportacoes/

» http://abiec.com.br/exportacoes/

Albers-Schonberg G, Arison BH, Chabala JC, Douglas AW, Eskola P, Fisher H, et al. Avermectins. structure determination. J Am Chem Soc. 1981;103(14):4216-4221.

Alvinerie M, Sutra JF, Galtier P, Mage C. Pharmacokinetics of eprinomectin in plasma and milk following topical administration to lactating dairy cattle. Res Vet Sci. 1999;67(3):229-232.

Aragão NM, Veloso MCC, Andrade JB. Validação de métodos cromatográficos de análise - um experimento de fácil aplicação utilizando cromatografia líquida de alta eficiência (CLAE) e os princípios da “química verde” na determinação de metilxantinas em bebidas. Quim Nova. 2009;32(9):2476-2481.

Benz GW, Roncalli RA, Gross SJ. Use of Ivermectin in Cattle, Sheep, Goats, and Swine, in: WC Campbell, Ivermectin and Abamectin. Springer, New York. 1989;215-229.

Cassiano NM, Barreiro JC, Martins LRR, Oliveira RV, Cass QB. Validação em métodos cromatográficos para análises de pequenas moléculas em matrizes biológicas. Quim Nova . 2009;32(4):1021-1030.

ChEMBL. Abamectin. Accessed in 17 July 2020. Available from: Available from: https://www.ebi.ac.uk/chembl/compound_report_card/CHEMBL3215298/Chemicalize Available from: Available from: https://www.ebi.ac.uk/chembl/compound_report_card/CHEMBL3215298/Chemicalize. Available from: https://chemicalize.com/

» https://www.ebi.ac.uk/chembl/compound_report_card/CHEMBL3215298/Chemicalize

» https://chemicalize.com/

Chen YC, Hung YP, Fleckenstein L. Liquid chromatographic assay of moxidectin in human plasma for application to pharmacokinetic study. J Pharm Biomed Anal. 2002;29(5):917-926.

Cruza BC, Lopes WDZ, Maciel WQ, Felippellia G, Fávero FC, Teixeira WFP, et al. Susceptibility of Rhipicephalus (Boophilus) microplus to ivermectin (200, 500 and 630 µg/kg) in field studies in Brazil. Vet Parasitol. 2015;207(3-4):309-317.

Danaher M, Howells LC, Crooks SRH, Cerkvenik-Flajs V, O’Keeffe M. Review of methodology for the determination of macrocyclic lactone residues in biological matrices. J Chromatogr B. 2006;844(2):175-203.

Dionisio AC, Rath S. Abamectin in soils: Analytical methods, kinetics, sorption and dissipation. Chemosphere. 2016;151:17-29.

DRUGBANK. Eprinomectin. Accessed in 17 July 2020. Available from: Available from: https://www.drugbank.ca/drugs/DB11431

» https://www.drugbank.ca/drugs/DB11431

Egerton JR, Ostlind DA, Blair LS, Eary CH, Suhayda D, Cifelli S, Riek RF, CampbelL WC. Avermectins, new family of potent anthelmintic agents: efficacy of the bla component. Antimicrob Agents Chemother. 1979;15(3):372-378.

Florez DHA, Teixeira RA, Silva RCS, Pires BC, Dutra FVA, Borges KB. Pipette-tip solid-phase extraction using polypyrrole as efficient adsorbent for extraction of avermectins and milbemycins in milk. Anal Bioanal Chem. 2018;410(14):3361-3374.

Frenich AG, Luiz MMA, Vidal J, González RR. Comparison of several extraction techniques for multiclass analysis of veterinary drugs in eggs using ultra-high pressure liquid chromatography-tandem mass spectrometry. Anal Chim Acta. 2010;661(2):150-160.

Giannetti L, Giorgi A, Necci F, Ferretti G, Buiarelli F, Neri B. Validation study on avermectine residues in foodstuffs. Anal Chim Acta . 2011;700(1-2):11-15.

Gomes LVC, Lopes WDZ, Cruz BC, Teixeira WF, Felippelli G, Maciel WG, et al. Acaricidal effects of fluazuron (2.5 mg/kg) and a combination of fluazuron (1.6 mg/kg) + ivermectin (0.63 mg/kg), administered at different routes, against Rhipicephalus (Boophilus) microplus parasitizing cattle. Exp Parasitol. 2015;153:22-28.

Hernández-Borges J, Ravelo-Pérez LM, Hernández-Suárez EM, Carnero A, Rodríguez-Delgado MA. Analysis of abamectin residues in avocados by high-performance liquid chromatography with fluorescence detection. J Chromatogr A. 2007;1165(1-2):52-57.

Hernando MD, Suàrez-Barcena JM, Bueno MJM, Garcia-Reyes JF, Fernández-Alba AR. Fast separation liquid chromatography-tandem mass spectrometry for the confirmation and quantitative analysis of avermectin residues in food. J Chromatogr A . 2007;1155(1):62-73.

Higa LOS, Garcia MV, Barros JC, Koller WW, Andreotti R. Evaluation of Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) resistance to different acaricide formulations using amostras from Brazilian properties. Rev Bras Parasitol Vet. 2016;25(2):163-171.

ICH - International Conference on Harmonization. Validation of Analytical Procedures: Methodology, Technical Requirements for the Registration of Pharmaceuticals for Human Use. 2005. Acessed in 17 July 2020. Available from: Available from: https://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q2_R1/Step4/Q2_R1__Guideline.pdf

» https://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q2_R1/Step4/Q2_R1__Guideline.pdf

Janer EC, Klafkec GM, Capurrob ML, Schumaker TTS. Cross-resistance between fipronil and lindane in Rhipicephalus (Boophilus) microplus. Vet Parasitol . 2015;210(1-2):77-83.

Krogh KA, Björklund E, Loeffler D, Fink G, Halling-Sørensen B, Ternes TA. Development of an analytical method to determine avermectins in water, sediments and soils using liquid chromatography-tandem mass spectrometry. J Chromatogr A . 2008;1211(1-2):60-69.

Milhome MAL, Sousa DOB, Lima FAF, Nascimento RF. Avaliação do potencial de contaminação de águas superficiais e subterrâneas por pesticidas aplicados na agricultura do Baixo Jaguaribe, CE. Eng Sanit Ambient. 2009;14(3):363-372.

Oliveira HL, Anacleto SS, Silva ATM, Pereira AC, Borges WS, Figueiredo EC, et al. Molecularly imprinted pipette-tip micro solid phase extraction for selective determination of fluoroquinolones in human urine using HPLC/DAD. J Chromatogr B . 2016;1033-1034:27-39.

Pollmeier M, Maiera S, Moriarty K, DeMontigny P. High-performance liquid chromatographic assay for the determination of a semisynthetic avermectin analog (eprinomectin) in bovine milk at parts per billion levels-method development and validation. J Chromatogr B . 2002;772(1)99-105.

Prichard R, Ménez C, Lespine A. Moxidectin and the avermectins: Consanguinity but not identity. Int J Parasitol Drugs Drug Resist. 2012;2:134-153.

Rabel SR, Stobaugh JF, Heinig R, Bostick JM. Improvements in detection sensitivity for the determination of ivermectin in plasma using chromatographic techniques and laser-induced fluorescence detection with automated derivatization. J Chromatogr. 1993;617(1):79-86.

Ribani M, Bottoli CBG, Collins CH, Jardim ICSF, Melo LFC. Validação em métodos cromatográficos e eletroforéticos. Quim Nova . 2004;27(5):771-780.

Silva ATM, Oliveira HL, Silva CF, Fonseca MC, Pereira TFD, Nascimento Jr CS, et al. Efficient molecularly imprinted polymer as a pipette-tip solid-phase sorbent for determination of carvedilol enantiomers in human urine. J Chromatogr B . 2017;1061-1062:399-410.

SINDAN (Sindicato Nacional da Indústria de Produtos para Saúde Animal). Representatividade por Classe terapêutica durante 2014-2018. Accessed in July 17, 2020. Available from: Available from: http://www.sindan.org.br/mercado-brasil-2018

» http://www.sindan.org.br/mercado-brasil-2018

Souza SVC, Junqueira G. A procedure to assess linearity by ordinary least squares method. Anal Chim Acta . 2005;552(1-2):25-35.

The United States Pharmacopeial Convention, Validation of Compendial Procedures, n. 1225, 2017. Accessed in July 2020. Available from: Available from: https://hmc.usp.org/sites/default/files/documents/HMC/GCs-Pdfs/c1225_1SUSP40.pdf

» https://hmc.usp.org/sites/default/files/documents/HMC/GCs-Pdfs/c1225_1SUSP40.pdf

Trapero DP, Sonseca-Yepes A, Moreira-Romero S, Hernández-Carrasquilla M. Determination of macrocyclic lactones in bovine liver using QuEChERS and HPLC with fluorescence detection. J Chromatogr B . 2016;1015-1016:166-172.

VICH GL 49: Studies to evaluate the metabolism and residue kinetics of veterinary drugs in food-producing animals: validation of analytical methods used in residue depletion studies. Available from: http://www.vichsec.org/guidelines/pharmaceuticals/pharma-safety/metabolism-and-residue-kinetics.html

» http://www.vichsec.org/guidelines/pharmaceuticals/pharma-safety/metabolism-and-residue-kinetics.html

Wang F, Chen J, Cheng H, Tang Z, Niu G, Pang Z, et al. Multi-residue method for the confirmation of four avermectin residues in food products of animal origin by ultra-performance liquid chromatography-tandem mass spectrometry. Food Addit Contam. 2008;28(5):627-663.

Wang X, Li P. Rapid screening of mycotoxins in liquid milk and milk powder by automated size-exclusion SPE-UPLC-MS/MS and quantification of matrix effects over the whole chromatographic run. Food Chem. 2015;173:897-904.

Downloads

Published

2022-11-23

Issue

Section

Original Article

How to Cite

Development and validation of analytical methods by HPLC for quality control of avermectins and milbemycins in bulk samples. (2022). Brazilian Journal of Pharmaceutical Sciences, 58. https://doi.org/10.1590/s2175-97902022e19604