In vitro assessment for cytotoxicity screening of new antimalarial candidates

Autores

  • Mariana Rodrigues Espíndola Universidade Federal de São João Del Rei, Campus Centro Oeste, Divinópolis, MG, Brasil
  • Fernando de Pilla Varotti Universidade Federal de São João Del Rei, Campus Centro Oeste, Divinópolis, MG, Brasil
  • Anna Caroline Campos Aguiar Universidade de São Paulo, Instituto de Física de São Carlos, São Carlos, SP, Brasil; Universidade Federal de São Paulo, Departamento de Biociência, Santos, SP, Brasil
  • Silmara Nunes Andrade Universidade Federal de São João Del Rei, Campus Centro Oeste, Divinópolis, MG, Brasil
  • Eliana Maria Mauricio Rocha Universidade Federal de São João Del Rei, Campus Centro Oeste, Divinópolis, MG, Brasil https://orcid.org/0000-0003-2723-9284

DOI:

https://doi.org/10.1590/s2175-97902022e18308%20

Palavras-chave:

Antimalarial, Cytotoxicity assay, MTT, Neutral red

Resumo

In antimalarial research there are no standard procedures to determine the toxicity of a drug candidate. Among the alternatives available, in vitro cytotoxicity assays are the most widely used to predict toxic effects of future therapeutic products. They have the advantage over the in vivo assays, in that they offer the possibility to restrain the number of experimental variables. The objective of the present study was to compare in vitro cytotoxic methods by testing various compounds currently used to treat malaria against different cell lines. Neutral red (NR) uptake and methylthiazoletetrazolium (MTT) colorimetric in vitro assays were used to determine preliminary toxicity of commercially available antimalarial drugs against tumor and non-tumor cells lines. Toxicity through brine shrimp lethality bioassay and hemolytic activity were also evaluated. Significant differences were observed in the tests measured by NR uptake. The tumor cell lines TOV-21G and HepG2 and non-tumor WI-26VA4 cells showed relatively uniform toxicity results, with TOV-21G being the most sensitive cell tested, presenting the lowest concentration to cause death to 50% of viable cells (CC50) values. The results of this study support the use of TOV-21G, HepG2 and WI-26VA4 cells lines as the choice for cytotoxicity tests to evaluate potential bioactive compounds.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

Aguiar ACC, Rocha EMM, Souza NB, França TCC, Krettli AU. New approaches in antimalarial drug discovery and development - A review. Mem Inst Oswaldo Cruz. 2012;107(7):831-45.

Alves MJM, Colli W. Experimentação Animal. Ciência Hoje. 2006;39(231):24-29.

Ashley EA, Recht J, White NJ. Primaquine: the risks and the benefits. Mal jour. 2014;13(1):418.

Ashok P, Ganguly S, Murugesan S. Manzamine alkaloids: isolation, cytotoxicity, antimalarial activity and SAR studies. Drug Discov Today. 2014;19(11):1781-1791.

Bailey J, Thew M, Balls M. An analysis of the use of animal models in predicting human toxicology and drug safety. Altern Lab Anim. 2014;42(3):181-199.

Bhattacharya S, Zhang Q, Carmichael PL, Boekelheide K, Andersen ME. Toxicity testing in the 21st century: defining new risk assessment approaches based on perturbation of intracellular toxicity pathways. PLoS One. 2011;6(6):e20887.

Borenfreund E, Buerner J. A simple quantitative procedure using monolayer culture for toxicity assays. J Tiss Cult Meth. 1984;9:7-9.

Cardoso PCDS, Rocha CAMD, Mota TC, Bahia MDO, Correa RMDS, Gomes LM, et al. In vitro assessment of cytotoxic, genotoxic and mutagenic effects of antimalarial drugs artemisinin and artemether in human lymphocytes. Drug Chem Toxicol. 2018;1-7.

Cargnin ST, Staudt AF, Medeiros P, Sol DMS, Santos APA, Zanchi FB et al. Semisynthesis, cytotoxicity, antimalarial evaluation and structure-activity relationship of two series of triterpene derivatives. Bioorg Med Chem Lett. 2018;28(3):265-272.

Carmichael J, DeGraff WG, Gazdar AF, Minna JD, Mitchell JB. Evaluation of a tetrazolium-based semiautomated colorimetric assay: Assessment of radiosensitivity. Cancer Res. 1987;15;47(4):943-946.

Cazarin KCC, Corrêa CL, Zambrone FAD. Redução, refinamento e substituição do uso de animais em estudos toxicológicos: uma abordagem atual. Rev Bras Cienc Farm. 2004;40(3):289-299.

Das AK. Anticancer effect of antimalarial artemisinin compounds. Ann Med Health Sci Res. 2015;5(2):93-102.

Das S, Dielschneider R, Chanas-LaRua A, Johnstoa JB, Gibson SB. Antimalarial drugs trigger lysosome-mediated cell death in chronic lymphocytic leukemia (CLL) cells. Leuk Res. 2018;7(70):79-86.

Dolabela MF. Triagem in vitro para atividade antitumoral e anti-Tripanossoma cruzi de extratos vegetais, produtos naturais e substâncias sintéticas [Dissertação]. Universidade Federal de Minas Gerais, Belo Horizonte; 1997. 128 pp.

Geng Y, Kohli L, Klocke BJ, Roth KA. Chloroquine-induced autophagic vacuole accumulation and cell death in glioma cells is p53 independent. Neuro-Oncol. 2010;12(5):473-481.

Genovese RF, Newman DB, Brewer TG. Behavioral and neural toxicity of the artemisinin antimalarial, arteether, but not artesunate and artelinate, in rats. Pharmacol Biochem Behav. 2000;67(1):37-44.

Ghantous A, Gali-Muhtasib H, Vuorela H, Saliba NA, Darwiche N. What made sesquiterpene lactones reach cancer clinical trials? Drug Discov Today . 2010;15(15-16):668-678.

Goldstein I, Marcel V, Olivier M, Oren M, Rotter V, Hainaut P. Understanding wild-type and mutant p53 activities in human cancer: new landmarks on the way to targeted therapies. Cancer Gene Ther. 2011;18(1):2.

Golenser J, Waknine JH, Krugliak M, Hunt NH, Grau GE. Current perspectives on the mechanism of action of artemisinins. Int J Parasitol. 2006;36(14):1427-1441.

Gu HM, Warhurst DC, Peters W. Uptake of [3H] dihydroartemisinine by erythrocytes infected with Plasmodium falciparum in vitro. Trans R Soc Trop Med Hyg. 1984;78(2):265-270.

Guragain D, Seubwai W, Kobayashi D, Silsinivanit A, Vaeteewoottacharn K, Sawanyawisuth K, et al. Artesunateand chloroquine induce cytotoxic activity on cholangiocarcinoma cells via different cell death mechanisms. Cell Mol Biol. (Noisy-le-Grand, France). 2018;64(10):113-118.

Housman G, Byler S, Heerboth S, Lapinska K, Longacre M, Snyder N, et al. Drug resistance in cancer: an overview. Cancers (Basel). 2014;6(3):1769-1792.

Hughes JP, Rees S, Kalindjian SB, Philpott KL. Principles of early drug discovery. Br J Pharmacol. 2011;162(6):1239-1249.

Jonet A, Guillon J, Mullie C, Cohen, A, Bentzinger G, Schneider J, et al. Synthesis and Antimalarial Activity of New Enantiopure Aminoalcoholpyrrolo[1,2-a]quinoxalines. Med Chem. 2018;14(3):293-303.

Karchesy YM, Kelsey RG, Constantine G, Karchesy JJ. Biological screening of selected Pacific Northwest forest plants using the brine shrimp (Artemia salina) toxicity bioassay. Springerplus. 2016;5:510.

Katsuno K, Burrows JN, Duncan K, van Huijsduijnen RH, Kaneko T, Kita K, et al. Hit and lead criteria in drug discovery for infectious diseases of the developing world. Nat Rev Drug Discov. 2015;14(11):751-758.

Kim E, Giese A, Deppert W. Wild-type p53 in cancer cells: When a guardian turns into a blackguard. Biochem Pharmacol. 2009;77(1):11-20.

Logarto PA, Silva YR, Guerra SI, Iglesias BL. Comparative study of the assay of Artemia salina L. and the estimate of the medium lethal dose (LD50 value) in mice, to determine oral acute toxicity of plant extracts. Phytomedicine. 2001;8(5):395-400.

Lu M, Lawrence DA, Marsters S, Acosta-Alvear D, Kimmig P, Mendez AS, et al. A. Opposing unfolded-protein-response signals converge on death receptor 5 to control apoptosis. Science. 2014;345(6192):98-101.

Meyer BN, Ferrihni NR, Putnam JE, Jacobsen LB, Nichols DE, McLaughilin JL. Brine shrimp: a convenient general bioassay for active plant constituents. Planta Med. 1982;45(5):31-34.

Mohammad S, Clowse MEB, Eudy AM, Criscione-Schreiber LG. Examination of hydroxychloroquine use and hemolytic anemia in G6PDH-Deficient patients. Arthritis Care Res (Hoboken). 2018;70(3):481-485.

Mosmann T. Rapid Colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1-2):55-63.

Parasuraman S. Toxicological screening. J Pharmacol Pharmacother. 2011;2(2):74-79.

Parra AL, Yhebra RS, Sardiñas IG, Buela LI. Comparative study of the assay of Artemia salina L. and the estimate of the medium lethal dose (LD50 value) in mice, to determine oral acute toxicity of plant extracts. Phytomed. 2001;8(5):395-400.

Percário S, Moreira DR, Gomes BAQ, Ferreira MES, Gonçalves ACM, Laurindo PSOC, et al. Oxidative Stress in Malaria. Int J Mol Sci. 2012;13(12):16346-16372.

Poole B, Ohkuma S. Effect of weak bases on the intralysosomal pH in mouse peritoneal macrophages. J Cell Biol. 1981;90(3):665-669.

Putnam KP, Bombick DW, Doolittle DJ. Evaluation of eight in vitro assays for assessing the cytotoxicity of cigarette smoke condensate. Toxicol in vitro. 2002;16(5):599-607.

Rajabi S, Ramazani A, Hamidi M, Naji T. Artemia salina as a Model Organism in Toxicity Assessment of Nanoparticles. Daru J Pharm Sci. 2015;23(1):20.

Recht J, Ashley EA, White NJ. Use of primaquine and glucose-6-phosphate dehydrogenase deficiency testing: Divergent policies and practices in malaria endemic countries. PLoS Negl Trop Dis. 2018;12(4):e0006230.

Repetto G, del Peso A, Zurita J. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc. 2008;3(7):1125-1131.

Rogero SO, Lugão AB, Ikeda TI, Cruz AS. Teste in vitro de citotoxicidade: estudo comparativo entre duas metodologias. Mat Res. 2003;6(3):317-320.

Russell WMS, Burch RL. The Principles of Humane Experimental Technique. London: Methuen & Co. 1959. Special edition published by Universities Federation for Animal Welfare (UFAW), 1992. Available from: https://caat.jhsph.edu/principles/the-principles-of-humane-experimental-technique

» https://caat.jhsph.edu/principles/the-principles-of-humane-experimental-technique

Shanks N, Greek R, Greek J. Are animal models predictive for humans? Philos Ethics Humanit Med. 2009;4:2.

Simpson JA, Agbenyega T, Barnes KI, Perri GD, Folb P, Gomes M, et al. Population pharmacokinetics of artesunate and dihydroartemisinin following intra-rectal dosing of artesunate in malaria patients. PLoS Med. 2006;3(11):e444.

Stepanenkov AA, Dmitrenko VV. Pitfalls of the MTT assay: Direct and off-target effects of inhibitors can result in over/ underestimation of cell viability. Gene. 2015;574(2):193-203.

WHO. Antimalarial drug efficacy and drug resistance. 2018. Available from: http://www.who.int/malaria/areas/treatment/drug_efficacy/en/

» http://www.who.int/malaria/areas/treatment/drug_efficacy/en/

Wolfgang JWP, Pfannenbecker U, Hoppe U. Validation of red blood cell test system as in vitro assay for the rapid screening of irritation potential of surfactants. Mol Toxicol. 1987;1(4):525-536.

Wu C. An important player in brine shrimp lethality bioassay: The solvent. J Adv Pharm Technol Res. 2014;5(1):57-58.

Yu H, Hou Z, Tian Y, Mou Y, Guo C. Design, synthesis, cytotoxicity and mechanism of novel dihydroartemisinin-coumarin hybrids as potential anti-cancer agents. Eur J Med Chem . 2018;151:434-449.

Downloads

Publicado

2022-12-19

Edição

Seção

Original Article

Como Citar

In vitro assessment for cytotoxicity screening of new antimalarial candidates. (2022). Brazilian Journal of Pharmaceutical Sciences, 58. https://doi.org/10.1590/s2175-97902022e18308