Nanoformulations of quercetin

a potential phytochemical for the treatment of uv radiation induced skin damages

Authors

  • Nancy Tripathi School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
  • Verma Surajpal School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India; School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences & Research University (DPSRU), Mehrauli-Badarpur Road, Puspvihar, Sector-3, New Delhi-110017, India
  • Manish Vyas School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
  • Narendra Singh Yadav French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion 84990, Israel
  • Subhajit Gain School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
  • Gopal Khatik School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India

DOI:

https://doi.org/10.1590/s2175-97902020000118744

Keywords:

Photodermatoses, Keratoses, Flavonoids, Quercetin and reactive oxygen species

Abstract

The continuous prolonged exposures of sun light especially the ultra violet (UV) radiation present in it, cause not only the risk of skin cancer but also it may cause premature skin aging, photodermatoses and actinic keratoses. Flavonoids (including Flavane, Flavanone, Flavone, Flavonol, Isoflavone, Neoflavone etc.) having potent antioxidant activity, used as topical applications for protection against UV induced skin damages as well as for skin care. Most commonly used flavonoid is quercetin (Flavonol), which is present in fruits, vegetables, and herbs. We aim to review the research focused on development of different novel formulations to treat UV radiations induced skin diseases. In this review, several formulations of flavonoid quercetin were discussed and their outcomes were compiled and compared in context to solubility, stability and efficiency of application. On the basis this comparative analysis we have concluded that three formulations, namely glycerosomes, nanostructured lipid carriers and deformable liposomes hold good applications for future aspects for topical delivery of quercetin. These formulations showed enhanced stability, increased quercetin accumulation in different skin layers, facilitated drug permeation in skin and long-lasting drug release.

Downloads

Download data is not yet available.

References

Berlier G, Gastaldi L, Sapino S, Miletto I, Bottinelli E, Chirio D, Ugazio E. MCM-41 as a useful vector for rutin topical formulations: Synthesis, characterization and testing. Int J Pharm. 2013a;457(1):177-186. doi:10.1016/j. ijpharm.2013.09.018.

» https://doi.org/10.1016/j. ijpharm.2013.09.018

Berlier G, Gastaldi L, Ugazio E, Miletto I, Iliade P, Sapino S. Stabilization of quercetin flavonoid in MCM-41 mesoporous silica: Positive effect of surface functionalization. J Colloid Interface Sci. 2013b;393(1):109-118. doi:10.1016/j. jcis.2012.10.073.

» https://doi.org/10.1016/j. jcis.2012.10.073

Cagdas M, Sezer AD, Bucak S. Chapter 1-liposomes as potential drug carrier systems for drug delivery. Nanotechnol Nanomater » “Application Nanotechnol Drug Deliv. IntechOpen. 2014:1-50. doi: http://dx.doi.org/10.5772/58459

» http://dx.doi.org/10.5772/58459

Casagrande R, Georgetti SR, Verri WA Jr., Dorta DJ, dos Santos AC, Fonseca MJ. Protective effect of topical formulations containing quercetin against UVB-induced oxidative stress in hairless mice. J Photochem Photobiol B Biol. 2006;84(1):21-27. doi:10.1016/j.jphotobiol.2006.01.006.

» https://doi.org/10.1016/j.jphotobiol.2006.01.006

Castangia I, Nacher A, Caddeo C, Diez-Sales O, Catalán- Latorre A, Fernàndez-Busquets A, et al. Therapeutic efficacy of quercetin enzyme-responsive nanovesicles for the treatment of experimental colitis in rats. Acta Biomater. 2015;13(January):216-227. doi:10.1016/j.actbio.2014.11.017.

» https://doi.org/10.1016/j.actbio.2014.11.017

Doadrio A, Salinas A, Sánchez-Montero J, Vallet-Regí M. Drug release from ordered mesoporous silicas. Curr Pharm Des. 2015;21(42):6213-6819. doi:10.2174/1381612822666151106121419.

» https://doi.org/10.2174/1381612822666151106121419

Dong Y, Mosquera-Giraldo LI, Taylor LS, Edgar KJ. Amphiphilic Cellulose Ethers Designed for Amorphous Solid Dispersion via Olefin Cross-Metathesis. Biomacromolecules. 2016;17(2):454-465. doi:10.1021/acs.biomac.5b01336.

» https://doi.org/10.1021/acs.biomac.5b01336

El Maghraby GM, Barry BW, Williams AC. Liposomes and skin: From drug delivery to model membranes. Eur J Pharm Sci. 2008;34(4-5):203-222. doi:10.1016/j.ejps.2008.05.002.

» https://doi.org/10.1016/j.ejps.2008.05.002

Fontecave T, Sanchez C, Azais T, Biossere C. Chemical Modification As a Versatile Tool for Tuning Stability of Silica Based Mesoporous Carriers in Biologically Relevant Conditions. Chem. Mater. 2012; 24 (22):4326-4336. doi:10.1021/cm302142k.

» https://doi.org/10.1021/cm302142k

Fry DW, White JC, Goldman ID. Rapid separation of low molecular weight solutes from liposomes without dilution. Anal Biochem. 1978;90(2):809-815. doi:10.1016/0003- 2697(78)90172-0.

» https://doi.org/10.1016/0003- 2697(78)90172-0

Gangwar M, Singh R, Goel RK, Nath G. Recent advances in various emerging vescicular systems: An overview. Asian Pac J Trop Biomed. 2012;2(SUPPL.):S1176-S1188. doi:10.1016/S2221-1691(12)60381-5.

» https://doi.org/10.1016/S2221-1691(12)60381-5

Gao L, Liu G, Wang X, Liu F, Xu Y, Ma J. Preparation of a chemically stable quercetin formulation using nanosuspension technology. Int J Pharm. 2011;404(1-2):231-237. doi:10.1016/j. ijpharm.2010.11.009.

» https://doi.org/10.1016/j. ijpharm.2010.11.009

Guo CY, Yang CF, Li QL, Tan Qi, Xi YW, Liu WN, et al. Development of a Quercetin-loaded nanostructured lipid carrier formulation for topical delivery. Int J Pharm. 2012;430(1-2):292-298. doi:10.1016/j.ijpharm.2012.03.042.

» https://doi.org/10.1016/j.ijpharm.2012.03.042

Gutierrez-Villanueva JL, Martin-Martin A, Pena V, Iniguez MP, de Celis B, de la Fuente R. Calibration of a portable HPGe detector using MCNP code for the determination of137Cs in soils. J Environ Radioact. 2008;99(10):1520-4. doi:10.1016/j. jenvrad.2007.12.016.

» https://doi.org/10.1016/j. jenvrad.2007.12.016

Heim KE, Tagliaferro AR, Bobilya DJ. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. J Nutr Biochem. 2002;13(10):572-584. doi:10.1016/S0955- 2863(02)00208-5.

» https://doi.org/10.1016/S0955- 2863(02)00208-5

Hudson S, Tanner DA, Redington W, Magner E, Hodnett K, Nakahara S. Quantitative TEM analysis of a hexagonal mesoporous silicate structure. Phys Chem Chem Phys. 2006;8(29):3467. doi:10.1039/b605581h.

» https://doi.org/10.1039/b605581h

Ichihashi M, Ueda M, Budiyanto A, Bito T, Oka M, Fukunaga M, et al. UV-induced skin damage. Toxicology. 2003;189(1-2):21-39. doi:10.1016/S0300-483X(03)00150-1.

» https://doi.org/10.1016/S0300-483X(03)00150-1

Jadhav SA, Scalarone D, Brunella V, Ugazio E, Sapino S, Berlier G. Thermoresponsive copolymer-grafted SBA-15 porous silica particles for temperature-triggered topical delivery systems. Express Polym Lett. 2017;11(2):96-105. doi:10.3144/expresspolymlett.2017.11.

» https://doi.org/10.3144/expresspolymlett.2017.11

Jenning V, Thünemann AF, Gohla SH. Characterisation of a novel solid lipid nanoparticle carrier system based on binary mixtures of liquid and solid lipids. Int J Pharm. 2000;199(2):167-177. doi:10.1016/S0378-5173(00)00378-1.

» https://doi.org/10.1016/S0378-5173(00)00378-1

Jia L, Zhang D, Li Z, Duan C, Wang Y, Feng F, et al. Nanostructured lipid carriers for parenteral delivery of silybin: Biodistribution and pharmacokinetic studies. Colloids Surfaces B Biointerfaces. 2010;80(2):213-218. doi:10.1016/j. colsurfb.2010.06.008.

» https://doi.org/10.1016/j. colsurfb.2010.06.008

Junyaprasert VB, Morakul B. Nanocrystals for enhancement of oral bioavailability of poorly water-soluble drugs. Asian J Pharm Sci. 2015;10(1):13-23. doi:10.1016/j.ajps.2014.08.005.

» https://doi.org/10.1016/j.ajps.2014.08.005

Keck CM, Muller RH. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. Eur J Pharm Biopharm. 2006;62(1):3-16. doi:10.1016/j.ejpb.2005.05.009.

» https://doi.org/10.1016/j.ejpb.2005.05.009

Kim YA, Tarahovsky YS, Yagolnik EA, Kuznetsova SM, Muzafarov EN. Integration of Quercetin-Iron Complexes into Phosphatidylcholine or Phosphatidylethanolamine Liposomes. Appl Biochem Biotechnol. 2015;176(7):1904-913. doi:https://doi.org/10.1007/s12010-015-1686-z

» https://doi.org/10.1007/s12010-015-1686-z

Kreilgaard M. Influence of microemulsions on cutaneous drug delivery. Adv Drug Deliv Rev. 2002;54(SUPPL.). doi:10.1016/S0169-409X(02)00116-3.

» https://doi.org/10.1016/S0169-409X(02)00116-3

Kulkarni R, Yadav JD, Vaidya KA and Gandhi PP. Transferosomes: an emerging tool for transdermal drug delivery. Int J Pharm Sci Res. 2011;2(4):735-741. doi: http://dx.doi.org/10.13040/IJPSR.0975-8232.2(4).735-41

» http://dx.doi.org/10.13040/IJPSR.0975-8232.2(4).735-41

Kumar A, Kushwaha V, Sharma PK. Pharmaceutical microemulsion: Formulation, characterization and drug deliveries across skin. Int J Drug Dev Res. 2014;6(1):1-21.

Li HL, Zhao X Bin, Ma YK, Zhai GX, Li LB, Lou HX. Enhancement of gastrointestinal absorption of quercetin by solid lipid nanoparticles. J Control Release. 2009;133(3):238-244. doi:10.1016/j.jconrel.2008.10.002.

» https://doi.org/10.1016/j.jconrel.2008.10.002

Lopez M, Martinez F, Del Valle C, Orte C, Miro M. Analysis of phenolic constituents of biological interest in red wines by high-performance liquid chromatography. J Chromatogr A. 2001;922(1-2):359-363. doi:10.1016/S0021-9673(01)00913-X.

» https://doi.org/10.1016/S0021-9673(01)00913-X

Maia CS, Mehnert W, Schäfer-Korting M. Solid lipid nanoparticles as drug carriers for topical glucocorticoids. Int J Pharm. 2000;196(2):165-167. doi:10.1016/S0378- 5173(99)00413-5.

» https://doi.org/10.1016/S0378- 5173(99)00413-5

Manca ML, Castangia I, Caddeo C, Pando D, Escribano E, Valenti D, et al. Improvement of quercetin protective effect against oxidative stress skin damages by incorporation in nanovesicles. Colloids Surfaces B Biointerfaces. 2014a;123:566-574. doi:10.1016/j.colsurf b.2014.09.059.

» https://doi.org/10.1016/j.colsurf b.2014.09.059

Manca ML, Castangia I, Matricardi P, Lampis S, Fernandez- Busquets X, Fadda AM, et al. Molecular arrangements and interconnected bilayer formation induced by alcohol or polyalcohol in phospholipid vesicles. Colloids Surfaces B Biointerfaces. 2014b;117:360-367. doi:10.1016/j.colsurfb.2014.03.010.

» https://doi.org/10.1016/j.colsurfb.2014.03.010

Maramaldi G, Togni S, Pagin I, Giacomelli L, Cattaneo R, Eggenhoffner R, et al. Soothing and anti-itch effect of quercetin phytosome in human subjects: a single-blind study. Clinical, Cosmetic and Investigational Dermatology. 2016; 9:55-62. doi:10.2147/CCID.S98890.

» https://doi.org/10.2147/CCID.S98890

Mitri K, Shegokar R, Gohla S, Anselmi C, Müller RH. Lipid nanocarriers for dermal delivery of lutein: Preparation, characterization, stability and performance. Int J Pharm. 2011;414(1-2):267-275. doi:10.1016/j.ijpharm.2011.05.008.

» https://doi.org/10.1016/j.ijpharm.2011.05.008

Miyake Y, Shimoi K, Kumazawa S, Yamamoto K, Kinae N, Osawa T. Identification and antioxidant activity of flavonoid metabolites in plasma and urine of Eriocitrin-treated rats. J Agric Food Chem. 2000;48(8):3217-3224. doi:10.1021/ jf990994g.

» https://doi.org/10.1021/ jf990994g

Moschwitzer J, Achleitner G, Pomper H, Müller RH. Development of an intravenously injectable chemically stable aqueous omeprazole formulation using nanosuspension technology. Eur J Pharm Biopharm. 2004;58(3):615-619. doi:10.1016/j.ejpb.2004.03.022.

» https://doi.org/10.1016/j.ejpb.2004.03.022

Muller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev. 2002;54(SUPPL.):131-155. doi:10.1016/S0169- 409X(02)00118-7.

» https://doi.org/10.1016/S0169- 409X(02)00118-7

Nikolic S, Keck CM, Anselmi C, Murutller RH. Skin photoprotection improvement: Synergistic interaction between lipid nanoparticles and organic UV filters. Int J Pharm. 2011;414(1-2):276-284. doi:10.1016/j.ijpharm.2011.05.010.

» https://doi.org/10.1016/j.ijpharm.2011.05.010

Njeri R, Njogu E, Kariuki DK, Kamau DM, Wachira FN, Njogu RNE. Effects of Foliar Fertilizer Application on Quality of Tea (Camellia sinensis) Grown in the Kenyan Highlands. Am J Plant Sci. 2014;5(5):2707-2715. doi:10.4236/ajps.2014.518286.

» https://doi.org/10.4236/ajps.2014.518286

Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci. 2016;5: e47. doi:10.1017/jns.2016.41.

» https://doi.org/10.1017/jns.2016.41

Pardeike J, Schwabe K, Müller RH. Influence of nanostructured lipid carriers (NLC) on the physical properties of the Cutanova Nanorepair Q10 cream and the in vivo skin hydration effect. Int J Pharm. 2010;396(1-2):166-173. doi:10.1016/j.ijpharm.2010.06.007.

» https://doi.org/10.1016/j.ijpharm.2010.06.007

Park SN, Lee MH, Kim SJ, Yu ER. Preparation of quercetin and rutin-loaded ceramide liposomes and drug-releasing effect in liposome-in-hydrogel complex system. Biochem Biophys Res Commun. 2013;435(3):361-366. doi:10.1016/j. bbrc.2013.04.093.

» https://doi.org/10.1016/j. bbrc.2013.04.093

Peppas NA, Bures P, Leobandung W, Ichikawa H. Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm. 2000;50(1):27-46. doi:10.1016/S0939-6411(00)00090-4.

» https://doi.org/10.1016/S0939-6411(00)00090-4

Pignatello R, Ricupero N, Bucolo C, Maugeri F, Maltese A, Puglisi G. Preparation and characterization of Eudragit Retard nanosuspensions for the ocular delivery of cloricromene. AAPS PharmSciTech. 2006;7(1):E192-E198. doi:10.1208/pt070127.

» https://doi.org/10.1208/pt070127

Rabinow BE. Nanosuspensions in drug delivery. Nat Rev Drug Discov. 2004;3(9):785-796. doi:10.1038/nrd1494.

» https://doi.org/10.1038/nrd1494

Rakesh R, Anoop KR. Ethosomes for transdermal and topical drug delivery. Int J Pharm Pharm Sci. 2012;4(SUPPL.3):17-24. doi:10.1081/DDC-120025458.

» https://doi.org/10.1081/DDC-120025458

Ruktanonchai U, Bejrapha P, Sakulkhu U, Opanasopit P, Bunyapraphatsara N, Junyaprasert V, et al. Physicochemical Characteristics, Cytotoxicity, and Antioxidant Activity of Three Lipid Nanoparticulate Formulations of Alpha-lipoic Acid. AAPS PharmSciTech. 2009;10(1):227-234. doi:10.1208/s12249-009-9193-6.

» https://doi.org/10.1208/s12249-009-9193-6

Sahil K, Premjeet S, Ajay B, Middha A, Bhawna K, Bihani SGL. Stealth Liposomes: a Review. Int J Res Ayurveda Pharm. 2011;2(5):1534-1538.

Santoso S, Hwang W, Hartman H, Zhang S. Self-assembly of Surfactant-like Peptides with Variable Glycine Tails to Form Nanotubes and Nanovesicles. Nano Lett. 2002;2(7):687-691. doi:10.1021/nl025563i.

» https://doi.org/10.1021/nl025563i

Sapino S, Ugazio E, Gastaldi L, Miletto I, Berlier G, Zonari D, et al. Mesoporous silica as topical nanocarriers for quercetin: Characterization and in vitro studies. Eur J Pharm Biopharm. 2015;89(December):116-125. doi:10.1016/j.ejpb.2014.11.022.

» https://doi.org/10.1016/j.ejpb.2014.11.022

Saupe A, Gordon KC, Rades T. Structural investigations on nanoemulsions, solid lipid nanoparticles and nanostructured lipid carriers by cryo-field emission scanning electron microscopy and Raman spectroscopy. Int J Pharm. 2006;314(1):56-62. doi:10.1016/j.ijpharm.2006.01.022.

» https://doi.org/10.1016/j.ijpharm.2006.01.022

Spiclin P, Homar M, Zupancic-Valant A, Gasperlin M. Sodium ascorbyl phosphate in topical microemulsions. Int J Pharm. 2003;256(1-2):65-73. doi:10.1016/S0378-5173(03)00063-2.

» https://doi.org/10.1016/S0378-5173(03)00063-2

Tusevski O, Kostovska A, Iloska A, Trajkovska L, Simic SG. Phenolic production and antioxidant properties of some Macedonian medicinal plants. Cent Eur J Biol. 2014;9(9):888-900. doi:10.2478/s11535-014-0322-1.

» https://doi.org/10.2478/s11535-014-0322-1

Ugazio E, Gastaldi L, Brunella V, Scalarone D, Jadhav SA, Oliaro-Bosso S, et al. Thermoresponsive mesoporous silica nanoparticles as a carrier for skin delivery of quercetin. Int J Pharm. 2016;511(1):446-454. doi:10.1016/j.ijpharm.2016.07.024.

» https://doi.org/10.1016/j.ijpharm.2016.07.024

Vicentini FT, He T, Shao Y, Fonseca MJ, Verri WAJr, Fisher GJ, et al. Quercetin inhibits UV irradiation-induced inflammatory cytokine production in primary human keratinocytes by suppressing NF-kB pathway. J Dermatol Sci. 2011;61(3):162-168. doi:10.1016/j.jdermsci.2011.01.002.

» https://doi.org/10.1016/j.jdermsci.2011.01.002

Wu TH, Yen FL, Lin LT, Tsai TR, Lin CC, Cham TM. Preparation, physicochemical characterization, and antioxidant effects of quercetin nanoparticles. Int J Pharm. 2008;346(1-2):160-168. doi:10.1016/j.ijpharm.2007.06.036.

» https://doi.org/10.1016/j.ijpharm.2007.06.036

Zarzyka I, Lorenzo MLD, Pyda M. Phase Diagrams of Smart Copolymers Poly (N-isopropylacrylamide) and Poly (sodium acrylate). Sci World J. 2014;1-8. doi:http://dx.doi.org/10.1155/2014/516076

» http://dx.doi.org/10.1155/2014/516076

Downloads

Published

2022-12-19

Issue

Section

Review

How to Cite

Nanoformulations of quercetin: a potential phytochemical for the treatment of uv radiation induced skin damages. (2022). Brazilian Journal of Pharmaceutical Sciences, 58. https://doi.org/10.1590/s2175-97902020000118744