Tetradenia riparia leaves, flower buds, and stem essential oils to control of Aedes aegypti larvae

Authors

  • Zilda Cristiani Gazim Post graduate Program in Biotechnology Applied to Agriculture, Paranaense University (UNIPAR), Umuarama, Paraná, Brazil https://orcid.org/0000-0003-0392-5976
  • Giuliana Zardeto-Sabec Post graduate Program in Biotechnology Applied to Agriculture, Paranaense University (UNIPAR), Umuarama, Paraná, Brazil
  • Renan Almeida de Jesus Post graduate Program in Biotechnology Applied to Agriculture, Paranaense University (UNIPAR), Umuarama, Paraná, Brazil
  • Herika Line Marko de Oliveira Post graduate Program in Biotechnology Applied to Agriculture, Paranaense University (UNIPAR), Umuarama, Paraná, Brazil
  • Ezilda Jacomassi Professional Master’s Graduate Program in Medicinal and Phytotherapeutic Plants in Primary Care. Paranaense University (UNIPAR), Umuarama-Paraná, Brazil
  • Ranulfo Piau Junior Post graduate Program of Animal Science, Paranaense University (UNIPAR), UmuaramaParaná, Brazil
  • José Eduardo Gonçalves Post graduate Program in Clean Technologies and; Cesumar Institute of Science, Technology and Innovation – ICETI, UniCesumar, Maringá, Paraná, Brazil

DOI:

https://doi.org/10.1590/s2175-97902022e20556

Keywords:

Sesquiterpenes, Larvicide, 14-hydroxy-9-epi-caryophyllene, Fenchone, α-cadinol

Abstract

Tetradenia riparia (Hochst.) Codd (Lamiaceae) is a species native to the African continent and used as an insect repellent. The objective of the study was to evaluate the larvicidal potential of essential oils (EOs) from the leaves, flower buds, and stem of T. riparia, collected in winter against Aedes aegypti larvae. The EOs were extracted by hydrodistillation (3 h) and identified by GC/MS. The EOs were tested against larvae of A. aegypti at concentrations ranging from 12500 to 1.5 µg/mL for 24 h. The insecticide activity was evaluated by probit analysis, and the anticholinesterase activity was determined by bioautographic method. The results of the class projection indicated sesquiterpenes as the majority class, corresponding to 60.66% (leaves), 64.70% (flower buds) and 83.99% (stem), and the bioassays on A. aegypti larvae indicated LC50 of 1590, 675 and 665 µg/mL, respectively. The anticholinesterase activity indicated that the EO of the leaves inhibited the enzyme at a concentration of 780 µg/mL, and those from the flower buds and stem inhibited up to 1560 µg/mL. The results indicated weak activity of essential oils against A. aegypti larvae.

Downloads

Download data is not yet available.

References

Adams RP. Identification of essential oil components by gas chromatography/mass spectrometry, 41st ed. Allured, Carol Stream; 2017. 804p.

Brasil. Ministério da Saúde. Secretaria de Vigilância em Saúde. Boletim epidemiológico. Monitoramento dos casos de arboviroses urbanas transmitidas pelo Aedes (dengue, Chikungunya e Zika), 21ª Semana Epidemiológica. 2020;51(22);1-19. Retrieved from https://www.saude.gov.br/images/pdf/2020/May/29/Boletim-epidemiologico-SVS-22. pdf

» https://www.saude.gov.br/images/pdf/2020/May/29/Boletim-epidemiologico-SVS-22. pdf

Braga IA, Valle D. Aedes aegypti: histórico do controle no Brasil. Epidemiol Serv Saúde. 2007;16(2):113-118.

Brain KR, Green DM, Lalko J, Api AM. In-vitro human skin penetration of the fragrance material geranyl nitrile. Toxicol In Vitro. 2007;21(1):133-138.

Camacho J, Picó J, Ferrer A. Data understanding with PCA: structural and variance information plots. Chemom Intell Lab Syst. 2010;100(1):48-56.

Camargo MF, Santos AH, Oliveira AWS, Abrão N, Alves RBN, Isac E. Avaliação da ação residual do larvicida Temephós sobre o Aedes aegypti (Diptera, Culicidae) em diferentes tipos de recipientes. Rev Patol.Trop. 1998;27(1):65-70. http://doi.org/10.5216rpt.v27i1.17197

» https://doi.org/http://doi.org/10.5216rpt.v27i1.17197

Camilotti J, Ferarrese L, Bortolucci WC, Gonçalves JE, Takemura OS, Junior RP, et al. Essential oil of parsley and fractions to in vitro control of cattle ticks and dengue mosquitoes. J Med Plant Res. 2015;9(40):1021-1030.

Castro LO, Ramos RLD. Principais gramíneas produtoras de óleos essenciais: Cymbopogon citratus (DC.) Stapf, capim- cidró, Cymbopogon martinii (Rox.) J. F. Watson, palma- rosa, Cymbopogon nardus (L.) Rendle, citronela, Elionurus candidus (Trin.) Hack., capim limão, Vetiveria zizanioides (L.) Nash, vetiver. Porto Alegre: FEPAGRO. 2003. 23p.

Cavalca PAM, Lolis MIGA, Reis B, Bonato CM. Homeopathic and larvicide effect of Eucalyptus cinerea essential oil against Aedes aegypti Braz Arch Biol Technol. 2010;53(4):835-843.

Cheng SS, Chang HT, Chang ST, Tsai KH, Chen WJ. Bioactivity of selected plant essential oils against the yellow fever mosquito Aedes aegypti larvae. Bioresour Technol. 2003;89(1):99-102.

Cheng SS, Huang CG, Chen YJ, Yu JJ, Chen WJ, Chang ST. Chemical compositions and larvicidal activities of leaf essential oils from two eucalyptus species. Bioresour Technol . 2009;100(1):452-456.

Demarchi IG, Terron MDS, Thomazella MV, Pedroso RB, Gazim ZC, Cortez DAG, et al. Immunomodulatory activity of essential oil from Tetrania riparia (Hochstetter) Codd in murine macrophages. Flavour Frag J. 2015;30(6):428-438.

Dias CN, Moraes DFC. Essential oils and their compounds as Aedes aegypti L. (Diptera: Culicidae) larvicides: review. Parasitol Res. 2013;113(2):565-592.

Dória GAA, Silva WJ, Carvalho GA, Alves PB, Cavalcanti SCH. A study of the larvicidal activity of two Croton species from northeastern Brazil against Aedes aegypti Pharm Biol. 2010;48(6):615-620.

Epa. Reregistration Eligibility Decision (RED), 1994. Facts: Limonene. EPA-738-F-94-030.

Fernandez CMM, Barba EL, Fernandez ACAM, Cardoso BK, Borges IB, Takemura OS, et al. Larvicidal Activity of Essential Oil from Tetradenia riparia to Control of Aedes aegypti Larvae in Function of Season Variation. J Essent Oil Bear Pl. 2014;17(5):813-823.

Fernandez CMM, Lorenzetti FB, Bernuci KB, Iwanaga CC, Bortolucci WC, Romagnolo MB, et al. Larvicidal potential of piperovatine in the control off catle tick. Vet Parasitol. 2018;263:5-9.

Gazim ZC, Amorim ACL, Hovell AMC, Rezende CM, Nascimento IA, Ferreira GA, et al. Seasonal variation, chemical composition, and analgesic and antimicrobial activities of the essential oil from leaves of Tetradenia riparia (Hochst.) Codd in Southern Brazil. Molecules. 2010;15(8):5509-5524.

Gazim ZC, Demarchi IG, Lonardoni MVC, Amorim ACL, Hovell AMC, Rezende CM, et al. Acaricidal activity of the essential oil from Tetradenia riparia (Lamiaceae) on the cattle tick Rhipicephalus (Boophilus) microplus (Acari; Ixodidae). Exp Parasitol. 2011;129(2):175-178.

Gazim ZC, Rodrigues F, Amorin ACL, Rezende CMD, Soković M, Tešević V, et al. New natural diterpene-type abietane from Tetradenia riparia essential oil with cytotoxic and antioxidant activities. Molecules . 2014;19(1):514-524.

Góis RWS, Sousa LM, Santiago GMP, Romero NR, Lemos TLG, Arriaga AMC, et al. Larvicidal activity against Aedes aegypti of pachar in from Bauhiniaa curuana Parasitol Res . 2013;112:2753-2757.

Gupta B, Reddy BPN. Fight against dengue in India: progresses and challenges. Parasitol Res . 2013;112(4):1367-1378.

Hair JF, Black W, Babin BJ, Anderson RE, Tatham RL. Análise Multivariada de Dados, fifth ed. Bookman, Porto Alegre. 2005. 688p.

Ibrahim MA, Kainulainen P, Aflatuni A, Tiilikkala K, Holopainen JK. Insecticidal, repellent, antimicrobial activity and phytotoxicity of essential oils: with special reference to limonene and its suitability for control of insect pests. Agr Food Sci. 2001;10:243-259.

Islam MT, Mubarak MS. Diterpenes and their derivatives as promising agentes against dengue vírus and dengue vectors: A literature-based review. Phytother Res. 2019;34(4):674-684.

Kiran SR, Bhavani K, Devi PS, Rao BRR, Reddy KJ. Composition and larvicidal activity of leaves and stem essential oils of Chloroxylonswietenia DC against Aedes aegypti and Anopheles stephensi Bioresour Technol . 2006;97(18):2481-2484.

Kiran RS, Devi PS. Avaliação da atividade mosquitocida de óleo essencial e sequiterpenes das folhas de Chloroxylon Swietenia DC. Parasitol Res . 2007;101:413-418.

Komalamisra N, Trongtokit Y, Rongsriyam Y, Apiwathnasorn C. Screening for larvicidal activity in some Thai plants against four mosquito vector species. Southeast Asian J Trop Med Public Health. 2005;36(6):1412-1422.

Kweka EJ, Mosha F, Lowassa A, Mahande AM, Kitau J, Matowo J, Lyatuu EE. Ethnobotanical study of some of mosquito repellent plants in north-eastern Tanzania. Malar J. 2008;7(1):152.

Lima MA, Oliveira FFM, Gomes GA, Lavor PL, Santiago GM, Nagao-Dias AT, et al. Evaluation of larvicidal activity of the essential oils of plants species from Brazil against Aedes aegypti (Diptera: Culicidae). Afr J Biotechnol. 2011;10(55):11716-11720.

Marston A, Kissling J, Hostettmann K. A rapid TLC bioautographicmethodforthedetectionofacetylcholinesterase and butyrylcholinesterase inhibitors in plants. Phytochem Anal. 2002;13(1):51-54. doi: 10.1002/pca.623.

» https://doi.org/10.1002/pca.623

Okem A, Finnie JF, Van Staden J. Pharmacological, genotoxic and phytochemical properties of selected South African medicinal plants used in treating stomach-related ailments. J Ethnopharmacol. 2012;139(3):712-720.

Omolo MO, Okinyo D, Ndiege IO, Lwande W, Hassanali A. Repellency of essential oils of some Kenyan plants against Anopheles gambiae Phytochemistry. 2004;65(20):2797-2802.

OMS. Organização Mundial de Saúde. Controle De Vetores. Retrieved from http://saude.gov.br/vigilancia-em-saude/controle-de-vetores 2019.

» http://saude.gov.br/vigilancia-em-saude/controle-de-vetores

Santos SRL, Melo MA, Cardoso AV, Santos RLC, de Sousa DP, Cavalcanti SCH. Relações estrutura-atividade de monoterpenos larvicidas e derivados contra Aedes aegypti Linn Chemosphere. 2011;84(1):150-153.

Souza VC, Lorenzi H. Botânica Sistemática: guia ilustrado para identificação das famílias de Fanerógamas nativas e exóticas no Brasil, baseado em APG III, 2012.

Paluch G, Grodnitzky J, Bartholomay L, Coats J. Quantitative structure− activity relationship of botanical sesquiterpenes: Spatial and contact repellency to the yellow fever mosquito, Aedes aegypti J Agric Food Chem. 2009;57(16):7618-7625.

Ryan MF, Byrne O. Plant-insect coevolution and inhibition of acetylcholinesterase. J Chem Ecol. 1988;14(10):1965-1975.

Sharma S, Rajan N, Cui S, Maas S, Casey K, Ale S, et al. Carbon and evapotranspiration dynamics of a non-native perennial grass with biofuel potential in the southern US Great Plains. Agr Forest Meteorol. 2019;269-270:285-293.

Simas NK, Lima EC, Conceição SR, Kuster RM, Oliveira- Filho AM. Produtos naturais para o controle da transmissão da dengue atividade larvicida de Myroxylon balsamum (óleo vermelho) e de terpenóides e fenilpropanóides. Quim Nova. 2004;27(1):46-49.

Statsoft Inc, 2017. Statistica for Windows (Computer Program Manual). (Accessed october 10 2018). http://www.statsoft.com/

» http://www.statsoft.com/

Tripathi AK, Mishra S. Plant monoterpenoids (prospective pesticides). In: Ecofriendly Pest Management for Food Security. Academic Press. 2016;507-524.

Yang Z, Zhang X, Duan D, Song Z, Yang M, Li S. Modified TLC bioautographic method for screening acetylcholinesterase inhibitors from plant extracts. J Sep Sci. 2009;32(18):3257-3259.

Zara AL, Santos SM, Fernandes-Oliveira ES, Carvalho RG, Coelho GE. Aedes aegypti controlstrategies: a review. Epidemiologia e serviços de saúde: Epidemiol Serv Saude. 2016;25(2):391-404.

Downloads

Published

2022-12-23

Issue

Section

Original Article

How to Cite

Tetradenia riparia leaves, flower buds, and stem essential oils to control of Aedes aegypti larvae. (2022). Brazilian Journal of Pharmaceutical Sciences, 58. https://doi.org/10.1590/s2175-97902022e20556