Development of diethylcarbamazine-loaded poly(caprolactone) nanoparticles for anti-inflammatory purpose

Preparation and characterization

Authors

  • Henrique Rodrigues Marcelino Faculty of Pharmacy, Federal University of Bahia, Salvador/BA, Brazil
  • Brennda Martins Gabinio Laboratory of Synthesis and Vectorization of Molecules (LSVM) https://orcid.org/0000-0002-8590-5962
  • Marine Nascimento de Lima Laboratory of Synthesis and Vectorization of Molecules (LSVM), State University of Paraiba, João Pessoa/PB, Brazil,
  • Silvana Cartaxo da Costa Urtiga Laboratory of Synthesis and Vectorization of Molecules (LSVM), State University of Paraiba, João Pessoa/PB, Brazil,
  • Gabriel Barros Rodrigues Laboratory of Ultrastructure, Institute Aggeu Magalhães, FIOCRUZ, Recife/PE, Brazil
  • Bruna Braga Dantas Biotechnology Center, Federal University of Paraiba, João Pessoa/PB, Brazil
  • Demétrius Antônio Machado de Araújo Biotechnology Center, Federal University of Paraiba, João Pessoa/PB, Brazil
  • Christina Alves Peixoto Biotechnology Center, Federal University of Paraiba, João Pessoa/PB, Brazil
  • Elquio Eleamen Oliveira Laboratory of Synthesis and Vectorization of Molecules (LSVM), State University of Paraiba, João Pessoa/PB, Brazil https://orcid.org/0000-0002-7214-4455

DOI:

https://doi.org/10.1590/s2175-97902022e19457

Keywords:

Diethylcarbamazine, Polymeric nanoparticles, Physicochemical properties, In vitro biocompatibility

Abstract

Diethylcarbamazine-loaded nanoparticles were previously evaluated for their anti-inflammatory activity. However, little is known regarding their physicochemical properties. Thus, the purpose of this study was to physiochemically characterize diethylcarbamazine-loaded poly(caprolactone) nanoparticles and evaluate their in vitro cytotoxicity. All formulations were prepared using the double-emulsion method. The average particle size was in the ranged between 298 and 364 nm and the polydispersity indexes were below 0.3. The zeta potential values were marginally negative, which may be related to drug loading, as higher loading led to an increase in the modulus of the zeta potential values. Fourier transform infrared spectroscopy (FT-IR) and X-ray powder diffraction (XRD) analysis did not reveal any chemical interactions between the chemicals used and the absence of drug in crystalline form on the nanoparticle surfaces. The in vitro drug release study revealed a concentration-dependent release from the nanoparticles into the medium. The in vitro cytotoxicity assay demonstrated the biocompatibility of the blank and loaded nanoparticles. Hence, all formulations presented good physicochemical and safety properties, corroborating the in vivo anti-inflammatory activity, previously reported by our group.

Downloads

Download data is not yet available.

References

Aguirre TAS, Teijeiro-Osorio D, Rosa M, Coulter IS, Alonso MJ, Brayden DJ. Current status of selected oral peptide technologies in advanced preclinical development and in clinical trials. Adv Drug Deliv Rev. 2016(Part B);106(3):223-41. doi:10.1016/j.addr.2016.02.004.

» https://doi.org/10.1016/j.addr.2016.02.004

Ali M, Afzal M, Kaushik U, Bhattacharya SM, Ahmad FJ, Dinda AK. Perceptive solutions to anti-filarial chemotherapy of lymphatic filariasis from the plethora of nanomedical sciences. J Drug Target. 2014;22(1):1-13. doi:10.3109/106118 6X.2013.832766.

» https://doi.org/10.3109/106118 6X.2013.832766

Araujo TM, Teixeira Z, Barbosa-Sampaio HC, Rezende LF, Boschero AC, Duran N, Hoehr NF. Insulin-loaded poly(epson-caprolactone) nanoparticles:efficient, sustained and safe insulin delivery system. J Biomed Nanotechnol. 2013;9(6):1098-106.

Barba AA, Dalmoro A, D’Amore M, Vascello C, Lamberti G. Biocompatible nano-micro-particles by solvent evaporation from multiple emulsions technique. J Mater Sci. 2014;49(14):5160-70. doi:10.1007/s10853-014-8224-1.

» https://doi.org/10.1007/s10853-014-8224-1

Chaves LL, Rolim LA, Gonçalves MLCM, Vieira ACC, Alves LDS, Soares MFR, et al. Study of stability and drug- excipient compatibility of diethylcarbamazine citrate. J Therm Anal Calorim. 2013;111(3):2179-86. doi:10.1007/ s10973-012-2775-7.

» https://doi.org/10.1007/ s10973-012-2775-7

Ciardelli G, Chiono V, Vozzi G, Pracella M, Ahluwalia A, Barbani N, et al. Blends of poly-(ε-caprolactone) and polysaccharides in tissue engineering applications. Biomacromolecules. 2005;6(4):1961-76. doi:10.1021/ bm0500805.

» https://doi.org/10.1021/ bm0500805

Costa A, Sarmento B, Seabra V. An evaluation of the latest in vitro tools for drug metabolism studies. Expert Opin Drug Metab Toxicol. 2014;10(1):103-19. doi:10.1517/17425255.2014 .857402.

» https://doi.org/10.1517/17425255.2014 .857402

Fathima N, Mamatha T, Qureshi HK, Anitha N, Rao JV. Drug-excipient interaction and its importance in dosage form development. J Appl Pharm Sci. 2011;1(6):66-71.

Gressl C, Brunsteiner M, Davis A, Landis M, Pencheva K, Scrivens G, et al. Drug-excipient interactions in the solid state: the role of different stress factors. Mol Pharm.2017;14(12):4560-71. doi:10.1021/acs.molpharmaceut.7b00677.

» https://doi.org/10.1021/acs.molpharmaceut.7b00677

Iqbal M, Valour JP, Fessi H, Elaissari A. Preparation of biodegradable PCL particles via double emulsion evaporation method using ultrasound technique. Colloid Polym Sci. 2015;293(3):861-73. doi:10.1007/s00396-014-3464-9.

» https://doi.org/10.1007/s00396-014-3464-9

Kamaraj N, Rajaguru PY, Issac P kumar, Sundaresan S. Fabrication, characterization, in vitro drug release and glucose uptake activity of 14-deoxy, 11, 12-didehydroandrographolide loaded polycaprolactone nanoparticles. Asian J Pharm Sci. 2017;12(4):353-62. doi:http://dx.doi.org/10.1016/j.ajps.2017.02.003

» http://dx.doi.org/10.1016/j.ajps.2017.02.003

Lafayette W, N.A. Peppas, J.J. Sahlin, Peppas NA, Sahlin JJ, N.A. Peppas, et al. A simple equation for the description of solute release. III. Coupling of diffusion and relaxation. Int J Pharm. 1989;57(2):169-72. doi:http://dx.doi.org/10.1016/0378- 5173(89)90306-2

» http://dx.doi.org/10.1016/0378- 5173(89)90306-2

Mensink MA, Frijlink HW, van der Voort Maarschalk K, Hinrichs WLJ. How sugars protect proteins in the solid state and during drying (review): Mechanisms of stabilization in relation to stress conditions. Eur J Pharm Biopharm. 2017;114:288-95. doi:10.1016/j.ejpb.2017.01.024.

» https://doi.org/10.1016/j.ejpb.2017.01.024

Peixoto CA, Silva BS. Anti-inflammatory effects of diethylcarbamazine: A review. Eur J Pharmacol. 2014;734(1):35-41. doi:10.1016/j.ejphar.2014.03.046.

» https://doi.org/10.1016/j.ejphar.2014.03.046

Rodrigues GB, Oliveira EE, Junior FJBM, Santos LAM, Oliveira WH, França MER, et al. Characterization and evaluation of nanoencapsulated diethylcarbamazine in model of acute hepatic inflammation. Int Immunopharmacol. 2017;50(May):330-7. doi:10.1016/j.intimp.2017.07.014.

» https://doi.org/10.1016/j.intimp.2017.07.014

Rodrigues GB, Oliveira EE, Junior FJBM, Santos LAM, Oliveira WH, França MER, et al. A new diethylcarbamazine formulation (NANO-DEC) as a therapeutic tool for hepatic fibrosis. Int Immunopharmacol . 2018;64(August):280-8. doi:10.1016/j.intimp.2018.09.010.

» https://doi.org/10.1016/j.intimp.2018.09.010

Rocha SWS, Silva BS, Gomes FOS, Silva AKS, Raposo C, Barbosa KPS, et al. Effect of diethylcarbamazine on chronic hepatic inflammation induced by alcohol in C57BL/6 mice. Eur J Pharmacol . 2012;689(1-3):194-203. doi:10.1016/j.ejphar.2012.05.044.

» https://doi.org/10.1016/j.ejphar.2012.05.044

Silva BS, Rodrigues GB, Rocha SWS, Ribeiro EL, Gomes FOS, Silva AKS, et al. Inhibition of NF-κB activation by diethylcarbamazine prevents alcohol-induced liver injury in C57BL/6 mice. Tissue Cell. 2014;46(5):363-71. doi:10.1016/j.tice.2014.06.008.

» https://doi.org/10.1016/j.tice.2014.06.008

Sinha VR, Bansal K, Kaushik R, Kumria R, Trehan A. Poly- ε-caprolactone microspheres and nanospheres: An overview. Int J Pharm . 2004;278(1):1-23.

Xin H, Chen L, Gu J, Ren X, wei Z, Luo J, et al. Enhanced anti-glioblastoma efficacy by PTX-loaded PEGylated poly(ε-caprolactone) nanoparticles: In vitro and in vivo evaluation. Int J Pharm . 2010;402(1-2):238-47. doi:10.1016/j.ijpharm.2010.10.005.

» https://doi.org/10.1016/j.ijpharm.2010.10.005

Zhang Y, Huo M, Zhou J, Zou A, Li W, Yao C, et al. DDSolver: An add-in program for modeling and comparison of drug dissolution profiles. AAPS J. 2010;12(3):263-71. doi:10.1208/ s12248-010-9185-1.

» https://doi.org/10.1208/ s12248-010-9185-1

Downloads

Published

2022-12-19

Issue

Section

Original Article

How to Cite

Development of diethylcarbamazine-loaded poly(caprolactone) nanoparticles for anti-inflammatory purpose: Preparation and characterization. (2022). Brazilian Journal of Pharmaceutical Sciences, 58. https://doi.org/10.1590/s2175-97902022e19457