Nanobubbles

A Novel Targeted Drug Delivery System

Authors

  • Pasupathy Rangasamy Research Scholar, Department of Pharmacy, Annamalai University, Annamalainagar, TN, India https://orcid.org/0000-0002-2126-2216
  • Pitchaimuthu Pandian Associate Professor, Department of Pharmacy, Annamalai University, Annamalainagar, TN, India
  • Selvamuthukumar Subramanian Associate Professor, Department of Pharmacy, Annamalai University, Annamalainagar, TN, India

DOI:

https://doi.org/10.1590/s2175-97902022e19604

Keywords:

Nanobubbles, Target drug delivery, Gene therapy, Thrombolysis

Abstract

Nanobubbles are nanometer size bubbles having different constituents of varying physicochemical characteristic for the inner core and outer shell. Nanobubbles are mainly fabricated to improve the stability, bioavailability and improve the biodistribution of the delivered drug to the specific targeted site. Their small sizes bubbles allow the possibility of extravasation from blood vessels into the surrounding tissues and ultrasound-targeted site-specific release with minimal invasiveness. Nanobubbles are developing as important contrast agents for imaging and carriers for drug delivery at targeted region. Sonication is the primary method for preparation of nanobubbles followed by thin-layer evaporation, high shear emulsification, mechanical agitation and coacervation or coalescence. With exposure to ultrasound/extracorporeal shock waves, the drug is liberated from the nanobubbles into the target cells. This review paper is an effort to reveal the different formulation development techniques briefly and varying shell and core content for developing nanobubbles.

Downloads

Download data is not yet available.

References

Anderson DR, Duryee MJ, Garvin RP, Boska MD, Thiele GM, Klassen LW. A method for the making and utility of gadolinium-labeled albumin microbubbles. Magn Reson Imaging. 2012;30(1):96-103.

Ao M, Wang Z, Ran H, Guo D, Yu J, Li A, et al. Gd-DTPA-loaded PLGA microbubbles as both ultrasound contrast agent and MRI contrast agent-A feasibility research. J Biomed Mater Res Part B. 2010;93(2):551-556.

Argenziano M, Banche G, Luganini A, Finesso N, Allizond V, Gulino GR, et al. Vancomycin-loaded nanobubbles: A new platform for controlled antibiotic delivery against methicillin-resistant Staphylococcus aureus infections. Int J Pharm. 2017;523(1):176-188.

Ayodele AT, Valizadeh A, Adabi M, Esnaashari SS, Madani F, Khosravani M, et al. Ultrasound nanobubbles and their applications as theranostic agents in cancer therapy: A review. Biointerface Res Appl Chem. 2017;7(6):2253-2262.

Betancourt T, Brown B, Brannon-Peppas L. Doxorubicin-loaded PLGA nanoparticles by nanoprecipitation: preparation, characterization and in vitro evaluation. Nanomedicine. 2007;2(2):219-32.

Bhandari P, Novikova G, Goergen CJ, Irudayaraj J. Ultrasound beam steering of oxygen nanobubbles for enhanced bladder cancer therapy. Sci Rep. 2018;8(1):3112.

Bhandari PN, Cui Y, Elzey BD, Goergen CJ, Long CM, Irudayaraj J. Oxygen nanobubbles revert hypoxia by methylation programming. Sci Rep . 2017;7(1):9268.

Bisazza A, Civra A, Donalisio M, Lembo D, Cavalli R. The in vitro characterization of dextran-based nanobubbles as possible DNA transfection agents. Soft Matter. 2011;7(22):10590-10593.

Bosca F, Bielecki PA, Exner AA, Barge A. Porphyrin-Loaded Pluronic Nanobubbles: A New US-Activated Agent for Future Theranostic Applications. Bioconjug Chem. 2018;29(2):234-240.

Cai X, Jiang Y, Lin M, Zhang J, Guo H, Yang F, et al. Ultrasound-Responsive Materials for Drug/Gene Delivery. Front Pharmacol. 2020;10:1650.

Carvalho C, Santos RX, Cardoso S, Correia S, Oliveira PJ, Santos MS, et al. Doxorubicin: the good, the bad and the ugly effect. Curr Med Chem. 2009;16(25):3267-3285.

Cavalli R, Argenziano M, Vigna E, Giustetto P, Torres E, Aime S, et al. Preparation and in vitro characterization of chitosan nanobubbles as theranostic agents. Colloids Surf B. 2015;129:39-46.

Cavalli R, Bisazza A, Lembo D. Micro-and nanobubbles: a versatile non-viral platform for gene delivery. Int J Pharm . 2013;456(2):437-445.

Cavalli R, Bisazza A, Trotta M, Argenziano M, Civra A, Donalisio M, et al. New chitosan nanobubbles for ultrasound-mediated gene delivery: preparation and in vitro characterization. Int J Nanomed. 2012;7:3309.

Cavalli R, Soster M, Argenziano M. Nanobubbles: a promising efficienft tool for therapeutic delivery. Ther Deliv. 2016;7(2):117-138.

Chatterjee K, Zhang J, Honbo N, Karliner JS. Doxorubicin cardiomyopathy. Cardiology. 2010;115(2):155-162.

Constantinides PP, Lambert KJ, Tustian AK, Schneider B, Lalji S, Ma W, et al. Formulation development and antitumor activity of a filter-sterilizable emulsion of paclitaxel. Pharm Res. 2000;17(2):175-182.

Darshan MS, Loftus MS, Thadani-Mulero M, Levy BP, Escuin D, Zhou XK, et al. Taxane-induced blockade to nuclear accumulation of the androgen receptor predicts clinical responses in metastatic prostate cancer. Cancer Res. 2011;71(18):6019-6029.

Dash M, Chiellini F, Ottenbrite R, Chiellini E. Chitosan-A versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci. 2011;36(8):981-1014.

Delalande A, Postema M, Mignet N, Midoux P, Pichon C. Ultrasound and microbubble-assisted gene delivery: recent advances and ongoing challenges. Ther Deliv . 2012;3(10):1199-1215.

Deng L, Li L, Yang H, Li L, Zhao F, Wu C, et al. Development and optimization of doxorubicin loaded poly (lactic-co-glycolic acid) nanobubbles for drug delivery into HeLa cells. J Nanosci Nanotechnol. 2014;14(4):2947-2954.

Dijkmans P, Juffermans L, Musters R, van Wamel A, Ten Cate F, van Gilst W, et al. Microbubbles and ultrasound: from diagnosis to therapy. Eur J Echocardiogr. 2004;5(4):245-246.

Dimcevski G, Kotopoulis S, Bjånes T, Hoem D, Schjøtt J, Gjertsen BT, et al. A human clinical trial using ultrasound and microbubbles to enhance gemcitabine treatment of inoperable pancreatic cancer. J Control Release. 2016;243:172-181.

Ding S, Patel N, Zhang H. Ciclosporin A as a Reversal Agent Against Concurrent Multidrug Resistance in Tumors with Nanobubbles. J Biomed Nanotechnol. 2018;14(1):190-197.

Duan L, Yang L, Jin J, Yang F, Liu D, Hu K, et al. Micro/nano-bubble-assisted ultrasound to enhance the EPR effect and potential theranostic applications. Theranostics. 2020;10(2):462-483.

Fan Z, Kumon RE, Deng CX. Mechanisms of microbubble-facilitated sonoporation for drug and gene delivery. Ther Deliv . 2014;5(4):467-486.

Fang JY, Lee WR, Shen SC, Huang YL. Effect of liposome encapsulation of tea catechins on their accumulation in basal cell carcinomas. J Dermatol Sci. 2006;42(2):101-109.

Ferrara KW. Driving delivery vehicles with ultrasound. Adv Drug Deliv Rev. 2008;60(10):1097-1102.

Frinking PJ, Bouakaz A, Kirkhorn J, Ten Cate FJ, De Jong N. Ultrasound contrast imaging: current and new potential methods. Ultrasound Med Biol. 2000;26(6):965-975.

Furusawa Y, Fujiwara Y, Hassan MA, Tabuchi Y, Morita A, Enomoto A, et al. Inhibition of DNA-dependent protein kinase promotes ultrasound-induced cell death including apoptosis in human leukemia cells. Cancer Lett. 2012;322(1):107-112.

Gao Z, Kennedy AM, Christensen DA, Rapoport NY. Drug-loaded nano/microbubbles for combining ultrasonography and targeted chemotherapy. Ultrasonics. 2008;48(4):260-270.

Giandalia G, De Caro V, Cordone L, Giannola LI. Trehalose-hydroxyethylcellulose microspheres containing vancomycin for topical drug delivery. Eur J Pharm Biopharm. 2001;52(1):83-89.

Hamano N, Kamoshida S, Kikkawa Y, Yano Y, Kobayashi T, Endo-Takahashi Y, et al. Development of antibody-modified nanobubbles using Fc-region-binding polypeptides for ultrasound imaging. Pharmaceutics. 2019;11(6):283.

He X, Wu DF, Ji J, Ling WP, Chen Xl, Chen YX. Ultrasound microbubble-carried PNA targeting to c-myc mRNA inhibits the proliferation of rabbit iliac arterious smooth muscle cells and intimal hyperplasia. Drug Delivery. 2016;23(7):2482-2487.

Houthaeve G, Xiong R, Robijns J, Luyckx B, Beulque Y, Brans T, et al. Targeted Perturbation of Nuclear Envelope Integrity with Vapor Nanobubble-Mediated Photoporation. ACS Nano. 2018;12(8):7791-7802.

Husseini GA, Pitt WG. The use of ultrasound and micelles in cancer treatment. J Nanosci Nanotechnol . 2008;8(5):2205-2215.

Husseini GA, Runyan CM, Pitt WG. Investigating the mechanism of acoustically activated uptake of drugs from Pluronic micelles. BMC Cancer. 2002;2(1):20.

Hwang TL, Lin YK, Chi CH, Huang TH, Fang JY. Development and evaluation of perfluorocarbon nanobubbles for apomorphine delivery. J Pharm Sci. 2009;98(10):3735-3747.

Hynynen K, Pomeroy O, Smith DN, Huber PE, McDannold NJ, Kettenbach J, et al. MR imaging-guided focused ultrasound surgery of fibroadenomas in the breast: a feasibility study. Radiology. 2001;219(1):176-185.

Ingram WM, Priston MJ, Sewell GJ. Improved assay for R (−)-apomorphine with application to clinical pharmacokinetic studies in Parkinson's disease. J Chromatogr B. 2006;831(1-2):1-7.

Iverson N, Plourde N, Chnari E, Nackman GB, Moghe PV. Convergence of nanotechnology and cardiovascular medicine. BioDrugs. 2008;22(1):1-10.

Jain AK, Swarnakar NK, Das M, Godugu C, Singh RP, Rao PR, et al. Augmented anticancer efficacy of doxorubicin-loaded polymeric nanoparticles after oral administration in a breast cancer induced animal model. Mol Pharm. 2011;8(4):1140-1151.

Jia Y, Yuan M, Yuan H, Huang X, Sui X, Cui X, et al. Co-encapsulation of magnetic Fe3O4 nanoparticles and doxorubicin into biodegradable PLGA nanocarriers for intratumoral drug delivery. Int J Nanomed . 2012;7:1697.

Jiang Q, Hao S, Xiao X, Yao J, Ou B, Zhao Z, et al. Production and characterization of a novel long-acting Herceptin-targeted nanobubble contrast agent specific for Her-2-positive breast cancers. Breast Cancer. 2016;23(3):445-455.

Jocham D, Chaussy C, Schmiedt E. Extracorporeal shock wave lithotripsy. Urol Int. 1986;41(5):357-368.

Kabalnov A, Klein D, Pelura T, Schutt E, Weers J. Dissolution of multicomponent microbubbles in the bloodstream: 1. Theory. Ultrasound Med Biol. 1998;24(5):739-749.

Kelkar SS, Reineke TM. Theranostics: combining imaging and therapy. Bioconjug Chem . 2011;22(10):1879-1903.

Khan MS, Hwang J, Lee K, Choi Y, Kim K, Koo HJ, et al. Oxygen-carrying micro/nanobubbles: Composition, synthesis techniques and potential prospects in photo-triggered theranostics. Molecules. 2018a;23(9):2210.

Khan MS, Hwang J, Seo Y, Shin K, Lee K, Park C, et al. Engineering oxygen nanobubbles for the effective reversal of hypoxia. Artif Cells Nanomed Biotechnol. 2018b;46(sup3):S318-S327.

Kou P, Zhang Y, Shao W, Zhu H, Zhang J, Wang H, et al. Significant efficacy and well safety of apatinib in an advanced liver cancer patient: a case report and literature review. Oncotarget. 2017;8(12):20510.

Kripfgans OD, Fabiilli ML, Carson PL, Fowlkes JB. On the acoustic vaporization of micrometer-sized droplets. J Acoust Soc Am. 2004;116(1):272-281.

Lammers T, Aime S, Hennink WE, Storm G, Kiessling F. Theranostic nanomedicine. Acc Chem Res. 2011;44(10):1029-1038.

Li GL, Danhof M, Bouwstra JA. Iontophoretic delivery of apomorphine in vitro: physicochemic considerations. Pharm Res . 2001;18(11):1509-1513.

Lin R, Ng LS, Wang CH. In vitro study of anticancer drug doxorubicin in PLGA-based microparticles. Biomaterials. 2005;26(21):4476-4485.

Liu Y, Miyoshi H, Nakamura M. Encapsulated ultrasound microbubbles: therapeutic application in drug/gene delivery. J Control Release . 2006;114(1):89-99.

Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release . 2000;65(1-2):271-284.

Manchanda R, Fernandez-Fernandez A, Nagesetti A, McGoron AJ. Preparation and characterization of a polymeric (PLGA) nanoparticulate drug delivery system with simultaneous incorporation of chemotherapeutic and thermo-optical agents. Colloids Surf B . 2010;75(1):260-267.

Marano F, Argenziano M, Frairia R, Adamini A, Bosco O, Rinella L, et al. Doxorubicin-loaded nanobubbles combined with extracorporeal shock waves: basis for a new drug delivery tool in anaplastic thyroid cancer. Thyroid. 2016a;26(5):705-716.

Marano F, Frairia R, Rinella L, Argenziano M, Bussolati B, Grange C, et al. Combining doxorubicin-nanobubbles and shockwaves for anaplastic thyroid cancer treatment: preclinical study in a xenograft mouse model. Endocr Relat Cancer. 2017;24(6):275-286.

Marano F, Rinella L, Argenziano M, Cavalli R, Sassi F, D’Amelio P, et al. Targeting Taxanes to Castration-Resistant Prostate Cancer Cells by Nanobubbles and Extracorporeal Shock Waves. PloS ONE. 2016b;11(12):e0168553.

Martin KH, Dayton PA. Current status and prospects for microbubbles in ultrasound theranostics. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2013;5(4):329-345.

Marxer EEJ, Brüßler J, Becker A, Schümmelfeder J, Schubert R, Nimsky C, et al. Development and characterization of new nanoscaled ultrasound active lipid dispersions as contrast agents. Eur J Pharm Biopharm . 2011;77(3):430-437.

Matsuki N, Ishikawa T, Ichiba S, Shiba N, Ujike Y, Yamaguchi T. Oxygen supersaturated fluid using fine micro/nanobubbles. Int J Nanomed . 2014;9:4495.

Mawhinney W, Adair C, Gorman S, McClurg B. Stability of vancomycin hydrochloride in peritoneal dialysis solution. Am J Health Syst Pharm. 1992;49(1):137-139.

Mehier-Humbert S, Bettinger T, Yan F, Guy RH. Plasma membrane poration induced by ultrasound exposure: implication for drug delivery. J Control Release . 2005;104(1):213-222.

Meng M, Gao J, Wu C, Zhou X, Zang X, Lin X, et al. Doxorubicin nanobubble for combining ultrasonography and targeted chemotherapy of rabbit with VX2 liver tumor. Tumor Biol. 2016;37(7):8673-8680.

Misra SK, Ghoshal G, Jensen TW, Ray PS, Burdette EC, Pan D. Bi-modal cancer treatment utilizing therapeutic ultrasound and an engineered therapeutic nanobubble. RSC Adv. 2015;5(78):63839-63845.

Negishi Y, Endo Y, Fukuyama T, Suzuki R, Takizawa T, Omata D, et al. Delivery of siRNA into the cytoplasm by liposomal bubbles and ultrasound. J Control Release . 2008;132(2):124-130.

Nomikou N, McHale AP. Microbubble-enhanced ultrasound-mediated gene transfer-towards the development of targeted gene therapy for cancer. Int J Hyperthermia. 2012;28(4):300-310.

O’Neill BE, Rapoport N. Phase-shift, stimuli-responsive drug carriers for targeted delivery. Ther Deliv . 2011;2(9):1165-1187.

Oeffinger BE, Wheatley MA. Development and characterization of a nano-scale contrast agent. Ultrasonics. 2004;42(1-9):343-347.

Panyam J, Williams D, Dash A, Leslie‐Pelecky D, Labhasetwar V. Solid‐state solubility influences encapsulation and release of hydrophobic drugs from PLGA/PLA nanoparticles. J Pharm Sci . 2004;93(7):1804-1814.

Perera R, Nittayacharn P, Cooley M, Jung O, Exner AA. Ultrasound contrast agents and delivery systems in cancer detection and therapy. Adv Cancer Res . 2018;139:57-84.

Raverdy V, Ampe E, Hecq JD, Tulkens PM. Stability and compatibility of vancomycin for administration by continuous infusion. J Antimicrob Chemother. 2013;68(5):1179-1182.

Sanlier SH, Ak G, Yılmaz H, Unal A, Bozkaya UF, Taniyan G, et al. Development Of Ultrasound-Triggered And Magnetic Targeted Nanobubble System For Dual-Drug Delivery . J Pharm Sci . 2018;108(3): DOI:10.1016/j.xphs.2018.10.030.

» https://doi.org/10.1016/j.xphs.2018.10.030

Santander-Ortega MJ, Csaba N, González L, Bastos-González D, Ortega-Vinuesa JL, Alonso MJ. Protein-loaded PLGA-PEO blend nanoparticles: encapsulation, release and degradation characteristics. Colloid Polym Sci. 2010;288(2):141-150.

Schutz FA, Buzaid AC, Sartor O. Taxanes in the management of metastatic castration-resistant prostate cancer: efficacy and management of toxicity. Crit Rev Oncol Hematol. 2014;91(3):248-256.

Sezer AD, Baş AL, Akbuğa J. Encapsulation of enrofloxacin in liposomes I: preparation and in vitro characterization of LUV. J Liposome Res. 2004;14(1-2):77-86.

Shen J, Zhuo N, Xu S, Song Z, Hu Z, Hao J, et al. Resveratrol delivery by ultrasound-mediated nanobubbles targeting nucleus pulposus cells. Nanomedicine . 2018;13(12):1433-1446.

Shi D. Integrated multifunctional nanosystems for medical diagnosis and treatment. Adv Funct Mater. 2009;19(21):3356-3373.

Shiota M, Eto M. Current status of primary pharmacotherapy and future perspectives toward upfront therapy for metastatic hormone‐sensitive prostate cancer. Int J Urol. 2016;23(5):360-369.

Sirsi S, Borden M. Microbubble compositions, properties and biomedical applications. Bubble Sci Eng Technol. 2009;1(1-2):3-17.

Smith NB, Lee S, Maione E, Roy RB, McElligott S, Shung KK. Ultrasound-mediated transdermal transport of insulin in vitro through human skin using novel transducer designs. Ultrasound Med Biol . 2003;29(2):311-317.

Stride E. Physical principles of microbubbles for ultrasound imaging and therapy. Translational Neurosonology. Karger Publishers. 2015, p. 11-22.

Subramony JA. Apomorphine in dopaminergic therapy. Mol Pharm. 2006;3(4):380-385.

Suzuki M, Koshiyama K, Shinohara F, Mori S, Ono M, Tomita Y, et al. Nanobubbles enhanced drug susceptibility of cancer cells using ultrasound. International Congress Series. Elsevier, 2005, p. 338-339.

Suzuki R, Takizawa T, Negishi Y, Hagisawa K, Tanaka K, Sawamura K, et al. Gene delivery by combination of novel liposomal bubbles with perfluoropropane and ultrasound. J Control Rel. 2007;117(1):130-136.

Suzuki R, Takizawa T, Negishi Y, Utoguchi N, Maruyama K. Effective gene delivery with novel liposomal bubbles and ultrasonic destruction technology. Int J Pharm . 2008;354(1-2):49-55.

Takeuchi S, Sato T, Kawashima N. Nonlinear response of microbubbles coated with surfactant membrane developed as ultrasound contrast agent-experimental study and numerical calculations. Colloids Surf B . 2002;24(3-4):207-216.

Tang N, Du G, Wang N, Liu C, Hang H, Liang W. Improving penetration in tumors with nanoassemblies of phospholipids and doxorubicin. J Natl Cancer Inst. 2007;99(13):1004-1015.

Terreno E, Uggeri F, Aime S. Image guided therapy: the advent of theranostic agents. J Control Rel . 2012;161(2):328-337.

Tian Y, Liu Z, Zhang L, Zhang J, Han X, Wang Q, et al. Apatinib-loaded lipid nanobubbles combined with ultrasound-targeted nanobubble destruction for synergistic treatment of HepG2 cells in vitro. OncoTargets Ther. 2018;11:4785.

Ugwoke MI, Kaufmann G, Verbeke N, Kinget R. Intranasal bioavailability of apomorphine from carboxymethylcellulose-based drug delivery systems. Int J Pharm . 2000;202(1-2):125-131.

Unger EC, Porter T, Culp W, Labell R, Matsunaga T, Zutshi R. Therapeutic applications of lipid-coated microbubbles. Adv Drug Deliv Rev . 2004;56(9):1291-1314.

Van Liew HD, Raychaudhuri S. Stabilized bubbles in the body: pressure-radius relationships and the limits to stabilization. J Appl Physiol. 1997;82(6):2045-2053.

Vandecasteele S, De Vriese A, Tacconelli E. The pharmacokinetics and pharmacodynamics of vancomycin in clinical practice: evidence and uncertainties. J Antimicrob Chemother . 2012;68(4):743-748.

Vidal C, González AQ, Fuente R. Toxic epidermal necrolysis due to vancomycin. Annals Allergy. 1992;68(4):345-347.

Wang H, Zhao Y, Wu Y, Hu Yl, Nan K, Nie G, et al. Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles. Biomaterials. 2011;32(32):8281-8290.

Wang IL, Hsiao CY, Li YH, Meng FB, Huang CC, Chen YM. Nanobubbles water curcumin extract reduces injury risks on drop jumps in women: a pilot study. Evid Based Complement Alternat Med. 2019;2019:8647587.

Wang Y, Li X, Zhou Y, Huang P, Xu Y. Preparation of nanobubbles for ultrasound imaging and intracelluar drug delivery. Int J Pharm . 2010;384(1-2):148-153.

Watanabe Y, Horie S, Funaki Y, Kikuchi Y, Yamazaki H, Ishii K, et al. Delivery of Na/I symporter gene into skeletal muscle using nanobubbles and ultrasound: visualization of gene expression by PET. J Nucl Med. 2010;51(6):951-958.

Wu J. Temperature rise generated by ultrasound in the presence of contrast agent. Ultrasound Med Biol . 1998;24(2):267-274.

Xie X, Lin W, Liu H, Deng J, Chen Y, Liu H, et al. Ultrasound-responsive nanobubbles contained with peptide-camptothecin conjugates for targeted drug delivery. Drug Deliv. 2016;23(8):2756-2764.

Yang H, Cai W, Xu L, Lv X, Qiao Y, Li P, et al. Nanobubble-Affibody: Novel ultrasound contrast agents for targeted molecular ultrasound imaging of tumor. Biomaterials. 2015a;37:279-288.

Yang H, Deng L, Li T, Shen X, Yan J, Zuo L, et al. Multifunctional PLGA nanobubbles as theranostic agents: combining doxorubicin and P-gp siRNA co-delivery into human breast cancer cells and ultrasound cellular imaging. J Biomed Nanotechnol . 2015b;11(12):2124-2136.

Yin T, Wang P, Li J, Wang Y, Zheng B, Zheng R, et al. Tumor-penetrating codelivery of siRNA and paclitaxel with ultrasound-responsive nanobubbles hetero-assembled from polymeric micelles and liposomes. Biomaterials. 2014;35(22):5932-5943.

Yin T, Wang P, Li J, Zheng R, Zheng B, Cheng D, et al. Ultrasound-sensitive siRNA-loaded nanobubbles formed by hetero-assembly of polymeric micelles and liposomes and their therapeutic effect in gliomas. Biomaterials. 2013;34(18):4532-4543.

Yin T, Wang P, Zheng R, Zheng B, Cheng D, Zhang X, et al. Nanobubbles for enhanced ultrasound imaging of tumors. Int J Nanomed . 2012;7:895.

Zelphati O, Uyechi LS, Barron LG, Szoka Jr FC. Effect of serum components on the physico-chemical properties of cationic lipid/oligonucleotide complexes and on their interactions with cells. Biochim Biophys Acta. 1998;1390(2):119-133.

Zhang X, Zheng Y, Wang Z, Huang S, Chen Y, Jiang W, et al. Methotrexate-loaded PLGA nanobubbles for ultrasound imaging and Synergistic Targeted therapy of residual tumor during HIFU ablation. Biomaterials. 2014;35(19):5148-5161.

Zhao YZ, Du LN, Lu CT, Jin YG, Ge SP. Potential and problems in ultrasound-responsive drug delivery systems. Int J Nanomed . 2013;8:1621.

Zhou X, Guo L, Shi D, Duan S, Li J. Biocompatible chitosan nanobubbles for ultrasound-mediated targeted delivery of doxorubicin. Nanoscale Res Lett. 2019;14(1):24.

Downloads

Published

2022-12-22

Issue

Section

Review

How to Cite

Nanobubbles: A Novel Targeted Drug Delivery System. (2022). Brazilian Journal of Pharmaceutical Sciences, 58. https://doi.org/10.1590/s2175-97902022e19604