Action of Bromelain and Ficin on horse anti Bothrops sp venom Antibodies

Autores

  • Rodolfo Ferreira Marques Department of Pharmaceutical Biochemical Technology, School of Pharmaceutical Sciences, University of São Paulo, Brazil https://orcid.org/0000-0003-4402-9131
  • Wagner Quintilio Laboratory of Biopharmaceuticals, Instituto Butantan, Brazil, 3 Biotechnology Center, Nuclear and Energy Research Institute (IPEN), Brazil
  • Marcos Camargo Knirsch Department of Pharmaceutical Biochemical Technology, School of Pharmaceutical Sciences, University of São Paulo, Brazil
  • Tamara Mieco Fucase Biotechnology Center, Nuclear and Energy Research Institute (IPEN), Brazil
  • Patrick Jack Spencer Biotechnology Center, Nuclear and Energy Research Institute (IPEN), Brazil
  • Marco Antonio Stephano Department of Pharmaceutical Biochemical Technology, School of Pharmaceutical Sciences, University of São Paulo, Brazil

DOI:

https://doi.org/10.1590/s2175-97902022e20867

Palavras-chave:

Bromelain, Ficin, Enzyme, F(ab)’2 fragments, Hyperimmune serum

Resumo

The treatment with hyperimmune sera constitute the only specific and effective therapy available against snakebite envenomation, most common in developing countries. Serum quality is an important factor on patient recovery time and in the incidence of death and permanent disability. To date, most sera consist of pepsin digested IgG antibodies harvested from hyperimmune animals. The use of animal derived enzymes, such as pepsin, to digest IgG, constitute a source of adventitious agents and contaminants, such as porcine circovirus. The present study aims to evaluate the use of the plant derived enzymes bromelain and ficin, as an alternative to pepsin. To this purpose, horse serum immunized against Bothrops venoms was purified with caprylic acid and digested with bromelain or ficin. SDS-PAGE results evidence the formation of F(ab)’2 fragments and suggest that a digestion time superior to 8 hours may be required to completely digest the antibodies with bromelain or ficin. F(ab)’2 fragments obtained by digestion with either bromelain or ficin digestion preserved the ability to recognize Bothrops sp. venom in western blotting assays. Therefore, both enzymes are suitable for use in large-scale production, minimizing contamination risks and increasing safety and efficiency of serotherapy treatments.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

Altun GD, Cetinus SA. Immobilization of pepsin on chitosan beads. Food Chem. 2007;100(3):964-71. Doi: 10.1016/j.foodchem.2005.11.005.

» https://doi.org/10.1016/j.foodchem.2005.11.005

Boyer L, Degan J, Ruha AM, Mallie J, Mangin E, Alagon A. Safety of intravenous equine F(ab)’2: insights following clinical trials involving 1534 recipients of scorpion antivenom. Toxicon. 2013;76:386-93. Doi: 10.1016/j.toxicon.2013.07.017.

» https://doi.org/10.1016/j.toxicon.2013.07.017

Brasil. Ministério da Saúde. Acidentes por animais peçonhentos - Serpentes: Ministério da Saúde; 2017 [cited 2020 06/19]. Available from: Available from: https://www.saude.gov.br/saude-de-a-z/acidentes-por-animais-peconhentos-serpentes

» https://www.saude.gov.br/saude-de-a-z/acidentes-por-animais-peconhentos-serpentes

Brasil. Ministério da Saúde. Série Histórica 1986-2018 de casos de acidentes por animais peçonhentos.: Ministerio da Saúde; 2019 [cited 2020 May 24]. Available from: Available from: https://www.saude.gov.br/images/pdf/2019/outubro/16/1--Dados-Epidemiologicos-SiteSVS--Setembro-2019-ANIMAIS-PE--ONHENTOS-S--RIE-HIST--RICA.pdf

» https://www.saude.gov.br/images/pdf/2019/outubro/16/1--Dados-Epidemiologicos-SiteSVS--Setembro-2019-ANIMAIS-PE--ONHENTOS-S--RIE-HIST--RICA.pdf

Burnouf T, Griffiths E, Padilla A, Seddik S, Stephano MA, Gutierrez JM. Assessment of the viral safety of antivenoms fractionated from equine plasma. Biologicals. 2004;32(3):115-28. Doi: 10.1016/j.biologicals.2004.07.001.

» https://doi.org/10.1016/j.biologicals.2004.07.001

Chippaux JP, Massougbodji A, Stock RP, Alagon A. Investigators of African Antivipmyn in B. Clinical trial of an F(ab)’2 polyvalent equine antivenom for African snake bites in Benin. Am J Trop Med Hyg. 2007;77(3):538-46. Doi: 10.4269/ajtmh.2007.77.538.

» https://doi.org/10.4269/ajtmh.2007.77.538

dos Santos MC, D’Imperio Lima MR, Furtado GC, Colletto GM, Kipnis TL, Dias da Silva W. Purification of F(ab)’2 anti-snake venom by caprylic acid: a fast method for obtaining IgG fragments with high neutralization activity, purity and yield. Toxicon . 1989;27(3):297-303. Doi: 10.1016/0041-0101(89)90177-3.

» https://doi.org/10.1016/0041-0101(89)90177-3

Gilliland SM, Forrest L, Carre H, Jenkins A, Berry N, Martin J, et al. Investigation of porcine circovirus contamination in human vaccines. Biologicals . 2012;40(4):270-7. Doi: 10.1016/j.biologicals.2012.02.002.

» https://doi.org/10.1016/j.biologicals.2012.02.002

Gutierrez JM. Global Availability of Antivenoms: The Relevance of Public Manufacturing Laboratories. Toxins (Basel). 2018;11(1). Doi: 10.3390/toxins11010005.

» https://doi.org/10.3390/toxins11010005

Jones RG, Landon J. Enhanced pepsin digestion: a novel process for purifying antibody F(ab’)(2) fragments in high yield from serum. J Immunol Methods. 2002;263(1-2):57-74. Doi: 10.1016/s0022-1759(02)00031-5.

» https://doi.org/10.1016/s0022-1759(02)00031-5

Kordzangene A, Mohebat R, Mosslemin M, Moghadam AT. Improvement of purification methods for F(ab´)2 fraction of equine hyperimmune plasma against scorpion venom. Biomedical Research. 2018;29(10):1968-73. Doi: 10.4066/biomedicalresearch.29-17-986.

» https://doi.org/10.4066/biomedicalresearch.29-17-986

Lamoyi E, Nisonoff A. Preparation of F(ab)’2 fragments from mouse IgG of various subclasses. J Immunol Methods . 1983;56(2):235-43. Doi: 10.1016/0022-1759(83)90415-5.

» https://doi.org/10.1016/0022-1759(83)90415-5

Mariani M, Camagna M, Tarditi L, Seccamani E. A new enzymatic method to obtain high-yield F(ab)2 suitable for clinical use from mouse IgGl. Mol Immunol. 1991;28(1-2):69-77. Doi: 10.1016/0161-5890(91)90088-2.

» https://doi.org/10.1016/0161-5890(91)90088-2

Mathew P, Amudhan CRT, Mathai P, Philip RM, Kumar S, Plackal JJ, et al. Maxillofacial Trauma and Snake Bite - Incidence in Coincidence. J Adv Med and Dental Sci Res. 2020;8(1):121-4.

Milenic DE, Esteban JM, Colcher D. Comparison of methods for the generation of immunoreactive fragments of a monoclonal antibody (B72.3) reactive with human carcinomas. J Immunol Methods . 1989;120(1):71-83. Doi: 10.1016/0022-1759(89)90291-3.

» https://doi.org/10.1016/0022-1759(89)90291-3

Petricciani J, Sheets R, Griffiths E, Knezevic I. Adventitious agents in viral vaccines: lessons learned from 4 case studies. Biologicals . 2014;42(5):223-36. Doi: 10.1016/j. biologicals.2014.07.003.

» https://doi.org/10.1016/j. biologicals.2014.07.003

Pucca MB, Cerni FA, Janke R, Bermudez-Mendez E, Ledsgaard L, Barbosa JE, et al. History of Envenoming Therapy and Current Perspectives. Front Immunol. 2019;10:1598. Doi: 10.3389/fimmu.2019.01598.

» https://doi.org/10.3389/fimmu.2019.01598

Schaeffer TH, Khatri V, Reifler LM, Lavonas EJ. Incidence of immediate hypersensitivity reaction and serum sickness following administration of Crotalidae polyvalent immune Fab antivenom: a meta-analysis. Acad Emerg Med. 2012;19(2):121-31. Doi: 10.1111/j.1553-2712.2011.01276.x.

» https://doi.org/10.1111/j.1553-2712.2011.01276.x

Silva de Oliveira S, Campos Alves E, Dos Santos Santos A, Freitas Nascimento E, Tavares Pereira JP, Mendonca da Silva I, et al. Bothrops snakebites in the Amazon: recovery from hemostatic disorders after Brazilian antivenom therapy. Clin Toxicol (Phila). 2020;58(4):266-74. Doi: 10.1080/15563650.2019.1634273.

» https://doi.org/10.1080/15563650.2019.1634273

Squaiella-Baptistao CC, Sant’Anna OA, Marcelino JR, Tambourgi DV. The history of antivenoms development: Beyond Calmette and Vital Brazil. Toxicon . 2018;150:86-95. Doi: 10.1016/j.toxicon.2018.05.008.

» https://doi.org/10.1016/j.toxicon.2018.05.008

Taherian A, Fazilati M, Moghadam AT, Tebyanian H. Optimization of purification procedure for horse F(ab´)2 Action of Bromelain and Ficin on horse anti Bothrops sp venom Antibodies antivenom against Androctonus crassicauda (Scorpion) venom. Trop J Pharm Res. 2018;17(3):409-14. Doi: 10.4314/ tjpr.v17i3.4.

» https://doi.org/10.4314/ tjpr.v17i3.4

WHO Expert Committee on Biological Standardization. World Health Organ Tech Rep Ser. 2016(999):1-267.

WHO. Snakebite: WHO targets 50% reduction in deaths and disabilities Geneva: World Health Organization; 2019 [cited 2020 19/06]. Available from: Available from: https://www.who.int/news-room/detail/06-05-2019-snakebite-who-targets-50-reduction-in-deaths-and-disabilities

» https://www.who.int/news-room/detail/06-05-2019-snakebite-who-targets-50-reduction-in-deaths-and-disabilities

Downloads

Publicado

2022-12-23

Edição

Seção

Original Article

Como Citar

Action of Bromelain and Ficin on horse anti Bothrops sp venom Antibodies. (2022). Brazilian Journal of Pharmaceutical Sciences, 58. https://doi.org/10.1590/s2175-97902022e20867