Vitamin C as a shelf-life extender in liposomes

Autores

  • Fernanda Reis Favarin Graduate program in Nanosciences, Franciscan University, Santa Maria, Rio Grande do Sul, Brazi
  • Samanta da Silva Gündel Graduate program in Nanosciences, Franciscan University, Santa Maria, Rio Grande do Sul, Brazil
  • Cristian Mafra Ledur Graduate program in Nanosciences, Franciscan University, Santa Maria, Rio Grande do Sul, Brazil
  • Isabel Roggia Graduate program in Nanosciences, Franciscan University, Santa Maria, Rio Grande do Sul, Brazil
  • Solange Binotto Fagan Graduate program in Nanosciences, Franciscan University, Santa Maria, Rio Grande do Sul, Brazil
  • André Gündel Department of Physics, Federal University of Pampa, Bagé, Rio Grande do Sul, Brazil
  • Aline de Oliveira Fogaça Graduate program in Nanosciences, Franciscan University, Santa Maria, Rio Grande do Sul, Brazil
  • Aline Ferreira Ourique Graduate program in Nanosciences, Franciscan University, Santa Maria, Rio Grande do Sul, Brazil https://orcid.org/0000-0003-0828-774X

DOI:

https://doi.org/10.1590/s2175-97902022e20492

Palavras-chave:

Ascorbic acid, Antioxidant, Nanoliposomes, Antioxidant activity, Reverse-phase evaporation

Resumo

The objective of this study was to evaluate the influence of vitamin C (VC) on the stability of stored liposomes under different climatic conditions. Liposomal formulations containing 1 mg/mL of VC (LIP-VC) and blank formulations (LIP-B) were prepared by the reverse-phase evaporation method. After preparation, they were characterized according to their refractive index, average vesicle diameter, polydispersity index (PDI), zeta potential, pH, content, encapsulation efficiency (EE%), morphology, stability and antioxidant activity. For stability, LIP-VC and LIP-B were stored in different climatic conditions (4 °C, 25 °C and 40 °C) for 30 days. The LIP-VC presented 1.3365 refractive index, 161 nm of mean diameter, 0.231 PDI, -7.3 mV zeta potential, 3.2 pH, 19.4% EE%, spherical morphology, 1 mg/mL of VC content, and antioxidant activity of 12 and 11.4 μmol of TE/mL for the radical DPPH and ABTS+, respectively. During stability, the LIP-B stored in 40 °C showed an instability in the parameters: PDI, vesicle size and zeta potential after 15 days, while the LIP-VC remained stable in its size and PDI for 30 days. After that, it is shown that VC can be used as an antioxidant and stabilizer in liposomes to increase the stability and shelf-life of vesicles.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

Apak RR, Gorinstein S, Böhm V, Schaich K, Özyürek M, Güçlü K. Methods of measurement and evaluation of natural antioxidant capacity/activity. Pure Appl Chem. 2013;85(5):957-998.

Belitz H, Grosch W. Food chemistry. Berlin: Springer. 1999.

Bobbio PA, Bobbio FO. Introdução à química de alimentos. Brasília: Varela; 1995.

Brand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Tech. 1995;28(1):25-30.

Brannon-Peppas L. Controlled release in the food and cosmetics industries. In: Comstock MJ, editor. Polymeric Delivery Systems. (USA). Washington, American Chemical Societ; 1993;42-52.

Brasil. Ministério da Saúde. Agência Nacional de Vigilância Sanitária. Resolução nº 166 - Guia para validação de métodos analíticos. Brasília (DF): Ministério da Saúde, 2017.

Cacela C, Hincha DK. Low amounts of sucrose are sufficient to depress the phase transition temperature of dry phsphatidylcholine, but not for lyoprotection of liposomes. Biophys J. 2006;90(8):2831-2842.

Daudt RM, Emanuelli J, Külkamp-Guerreiro IC, Pohlmann AR, Guterres SS. A nanotecnologia como estratégia para o desenvolvimento de cosméticos. Ciênc Cult. 2013;65(3):28-31.

Estes DJ, Mayer M. Giant liposomes in physiological buffer using electroformation in a flow chamber. BBA-Biomembranes. 2005;1712(2):152-160.

Farhang B, Kakuda Y, Corredig M. Encapsulation of ascorbic acid in liposomes prepared with milk fat globule membrane-derived phospholipids. Dairy Sci Technol. 2012;92(4):353-366.

Food Ingredients Brasil. Dossiê antioxidantes. Food Ingredients Brasil. 2016;36:31-47.

Galvão AM, Galvão JS, Pereira MA, Cadena PG, Magalhães NSS, Fink JB, et al. Cationic liposomes containing antioxidants reduces pulmonary injury in experimental model of sepsis: Liposomes antioxidants reduces pulmonary damage. Respir Physiol Neurobiol. 2016;231:55-62.

Halliwell B, Gutteridge JM. Role of free radicals and catalytic metal ions in human disease: an overview. Method Enzymol. 1990;186:1-85.

Hohenberg P, Kohn W. Inhomogeneous electron gás. Phys Rev. 1964;136(3B):B864-B871.

Hunt CA, Tsang S. α-Tocopherol retards autoxidation and prolongs the shelf-life of liposomes. Int J Pharm. 1981;8(2):101-110.

International Conference on Harmonization. ICH. Validation of analytical procedures: text and methodology. In International Conference on Harmonization. Geneva. 2005.

Jauris IM, Matos CF, Saucier C, Lima EC, Zarbin AJG, Fagan SB, et al. Adsorption of sodium diclofenac on graphene: a combined experimental and theoretical study. Phys Chem Chem Phys. 2016;18(3):1526-1536.

Jiao Z, Wang X, Yin Y, Xia J. Preparation and evaluation of vitamin C and folic acid-coloaded antioxidant liposomes. Particul Sci Technol. 2018;37(4):453-459.

Mann J, Truswell AS. Nutrição Humana. São Paulo: Guanabara Koogan; 2011.

Marsanasco M, Calabró V, Piotrkowski B, Chiaramoni NS, Alonso SV. Fortification of chocolate milk with omega-3, omega-6, and vitamins E and C by using liposomes. Eur J Lipid Sci Tech. 2016;118(9):1271-1281.

Mertins O, Sebben M, Pohlmann AR, da Silveira NP. Production of soybean phosphatidylcholine-chitosan nanovesicles by reverse phase evaporation: a step by step study. Chem Phys Lipids. 2005;138(1-2):29-37.

Müller RH, Gohla S, Keck CM. State of the art of nanocrystals-special features, production, nanotoxicology aspects and intracellular delivery. Eur J Pharm Biopharm. 2011;78(1):1-9.

Oliveira CB, Rigo LA, Dalla Rosa L, Gressler LT, Zimmermann CEP, Ourique AF, et al. Liposomes produced by reverse phase evaporation: in vitro and in vivo efficacy of diminazene aceturate against Trypanosoma evansi. Parasitology. 2014;141(6):761-769.

Ordóñez JA, Rodriguez M, Àlvarez L, Sanz M, Minguillon G, Perales L, et al. Tecnologia de alimentos: Componentes dos alimentos e processos. Porto Alegre: Artmed; 2007.

Ourique AF, Chaves PS, Souto GD, Pohlmann AR, Guterres SS, Beck RCR. Redispersible liposomal-N-acetylcysteine powder for pulmonary administration: development, in vitro characterization and antioxidant activity. Eur J Pharm Sci. 2014;65:174-182.

Perdew JP, Zunger A. Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B. 1981;23(10):5048.

Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Bio Med. 1999;26(9-10):1231-1237.

Reische DW, Lillard DA, Eitenmiller RR. Antioxidants, Food Lipids: Chemistry, Nutrition, and Biotechnology. Boca Ratón: CRC Press; 2008.

Roesler R, Malta LG, Carrasco LC, Holanda RB, Sousa CAS, Pastore GM. Antioxidant activity of cerrado fruits. Food Sci Technol. 2007;27(1):53-60.

Roggia I, Dalcin AJF, Ourique AF, da Cruz IB, Ribeiro EE, Mitjans M, et al. Protective effect of guarana-loaded liposomes on hemolytic activity. Colloid Surface B. 2020;187:110636.

Schaffazick SR, Guterres SS, Freitas LLDL, Pohlmann AR. Caracterização e estabilidade físico-química de sistemas poliméricos nanoparticulados para administração de fármacos. Quim Nova. 2003;26(5):726-737.

Scherer R, Rybka ACP, Ballus CA, Meinhart AD, Teixeira Filho J, Godoy HT. Validation of a HPLC method for simultaneous determination of main organic acids in fruits and juices. Food Chem. 2012;135(1):150-154.

Sharma A, Sharma US. Liposomes in drug delivery: progress and limitations. Int J Pharm . 1997;154(2):123-140.

Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, et al. The SIESTA method for ab initio order-N materials simulation. J Phys Condens Matter. 2002;14(11):2745.

Urano S, Iida M, Otani I, Matsuo M. Membrane stabilization of vitamin E; interactions of α-tocopherol with phospholipids in bilayer liposomes. Biochem Biophys Res Commun. 1987;146(3):1413-1418.

Winterhalter M, Lasic, DD. Liposome stability and formation: experimental parameters and theories on the size distribution. Chem Phys Lipids . 1993;64(1-3):35-43.

Yen GC, Duh PD. Scavenging effect of methanolic extracts of peanut hulls on free-radical and active-oxygen species. J Agr Food Chem . 1994;42(3):629-632.

Downloads

Publicado

2023-01-26

Edição

Seção

Original Article

Como Citar

Vitamin C as a shelf-life extender in liposomes. (2023). Brazilian Journal of Pharmaceutical Sciences, 58. https://doi.org/10.1590/s2175-97902022e20492