English

English

Autores

  • Nadeem Rais Department of Pharmacy https://orcid.org/0000-0002-0430-228X
  • Kehkashan Parveen Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
  • Rizwan Ahmad Department of Pharmacy, Vivek College of Technical Education, Bijnor (U.P.), India
  • Waseem Ahmad Siddiqui Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
  • Ayasha Nadeem Department of kulliyat, SUMER, Jamia Hamdard, New Delhi, India
  • Akash Ved Goel Institute of Pharmaceutical Sciences, Lucknow, (U.P.), India https://orcid.org/0000-0003-1215-5133

DOI:

https://doi.org/10.1590/s2175-97902022e201183

Palavras-chave:

Type 2 diabetes mellitus, Hyperlipidemia, S-Allyl Cysteine, Taurine, Renal damage

Resumo

The present study was designed to evaluate the beneficial synergistic effects of S-allyl Cysteine (SAC) and Taurine (TAU) on hyperglycemia, lipid profile and renal damage markers in type 2 diabetes mellitus (T2DM) in rats. Experimental T2DM was developed by administering an intraperitoneal single dose of nicotinamide (NA; 230 mg/kg) and streptozotocin (STZ; 65 mg/ kg) in adult rats. Control and diabetic rats were treated with SAC (150 mg/kg); TAU (200 mg/ kg) or SAC and TAU (75+100 mg/kg) combination for four weeks. Measurements of traditional markers of kidney toxicity in serum, such as blood urea nitrogen (BUN), serum creatinine (Scr), and alkaline phosphatase (ALP), together with serum cholesterol/triglyceride such as serum total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) and very low-density lipoprotein cholesterol (VLDL-C) may yield a snapshot of renal damage and lipid profile in NA/STZ-treated rats. The variation in levels of fasting blood glucose, glycosylated hemoglobin, insulin and lipid profile was significantly augmented in SAC/TAU treatment group. The diabetic group showed elevated renal injury markers in serum, which were decreased significantly by SAC/TAU treatment. Thus the results of the experiment clearly indicate the potential of the SAC/TAU combination in improving diabetic complications.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

Alberti KGMM, Press CM. The biochemistry and the complications of diabetes. In: Keen H, Jarrett J, editor. Complications of diabetes. 2nd ed. London: Edward Arnold; 1982. p. 231-270.

Ansari MA, Arain AA, Phull QZ, Memon AR. Effects of S-allyl cysteine on insulin secretion: a proposed mechanism for its anti-hyperglycemic effects. Biomed J Sci Tech Res. 2018;6(3):1-3. doi.org/10.26717/BJSTR.2018.06.001352.

» https://doi.org/org/10.26717/BJSTR.2018.06.001352

Ansari MA, Phull QZ, Arain AA, Memon AR, Kazi S, Abbasi P. Comparison between S-allyl cysteine and gliclazide in lowering the blood glucose levels in diabetic rats. J Liaquat Uni Med Health Sci. 2017;16(2):99-102. doi. org/10.22442/jlumhs.171620514.

» https://doi.org/org/10.22442/jlumhs.171620514.

Asdaq SM. Antioxidant and hypolipidemic potential of aged garlic extract and its constituent, s-allyl cysteine, in rats. Evid Based Complement Alternat Med. 2015;2015:328545. doi.org/10.1155/2015/328545.

» https://doi.org/org/10.1155/2015/328545

Awapara J. Free amino acids in invertebrates: a comparative study of their distribution and metabolism. In: Holden JT, editor. Amino acid pools. Amsterdam: Elsevier Publication Company; 1962. p. 158-175.

Baxmann AC, Ahmed MS, Marques NC, Menon VB, Pereira AB, Kirsztajn GM, et al. Influence of muscle mass and physical activity on serum and urinary creatinine and serum cystatin C. Clin J Am Soc Nephrol. 2008;3(2):348-354. doi.org/10.2215/CJN.02870707.

» https://doi.org/org/10.2215/CJN.02870707

Chen W, Guo JX, Chang P. The effect of taurine on cholesterol metabolism. Mol Nutr Food Res. 2012;56(5):681-690. doi.org/10.1002/mnfr.201100799.

» https://doi.org/org/10.1002/mnfr.201100799

Chu Q, Lee DT, Tsao SW, Wang X, Wong YC. S-allylcysteine, a water-soluble garlic derivative, suppresses the growth of a human androgen-independent prostate cancer xenograft, CWR22R, under in vivo conditions. BJU Int. 2007;99(4):925-932. doi.org/10.1111/j.1464-410X.2006.06639.x.

» https://doi.org/org/10.1111/j.1464-410X.2006.06639.x

Clozel M, Hess P, Qiu C, Ding SS, Rey M. The urotensin-II receptor antagonist palosuran improves pancreatic and renal function in diabetic rats. J Pharmacol Exp Ther. 2006;316(3):1115-21. doi.org/10.1124/jpet.105.094821.

» https://doi.org/org/10.1124/jpet.105.094821

Dice JF, Walker CD, Byrne B, Cardiel A. General characteristics of protein degradation in diabetes and starvation. Proc Natl Acad Sci USA. 1978;75(5):2093-2097. doi.org/10.1073/pnas.75.5.2093.

» https://doi.org/org/10.1073/pnas.75.5.2093

Elgawish A, Glomb M, Friedlander M, Monnier VM. Involvement of hydrogen peroxide in collagen cross-linking by high glucose in vitro and in vivo. J Biol Chem. 1996;271(22):12964-12971. doi.org/10.1074/jbc.271.22.12964.

» https://doi.org/org/10.1074/jbc.271.22.12964

Fujimoto M, Shimizu N, Kunii K, Martyn JA, Ueki K, Kaneki M. A role for iNOS in fasting hyperglycemia and impaired insulin signaling in the liver of obese diabetic mice. Diabetes. 2005;54(5):1340-1348. doi.org/10.2337/ diabetes.54.5.1340.

» https://doi.org/org/10.2337/ diabetes.54.5.1340

Fukuda K, Akao S, Ohno Y, Yamashita K, Fujiwara H. Inhibition by costunolide of phorbol ester-induced transcriptional activation of inducible nitric oxide synthase gene in a human monocyte cell line THP-1. Cancer Lett. 2001;164(1):7-13. doi.org/10.1016/s0304-3835(00)00704-7.

» https://doi.org/org/10.1016/s0304-3835(00)00704-7

Green J, Feinglos M. Update on type 2 diabetes mellitus: understanding changes in the diabetes treatment paradigm. Int J Clin Pract Suppl. 2007;(154):3-11. doi.org/10.1111/j.1742-1241.2007.01438.x.

» https://doi.org/doi.org/10.1111/j.1742-1241.2007.01438.x

Gunawardana SC, Head WS, Piston DW. Dimethyl amiloride improves glucose homeostasis in mouse models of type 2 diabetes. Am J Physiol Endocrinol Metab. 2008;294(6):E1097-E1108. doi.org/10.1152/ajpendo.00748.2007.

» https://doi.org/doi.org/10.1152/ajpendo.00748.2007

Ha AW, Ying T, Kim WK. The effects of black garlic (Allium satvium) extracts on lipid metabolism in rats fed a high fat diet. Nutr Res Pract. 2015;9(1):30-6. doi.org/10.4162/ nrp.2015.9.1.30.

» https://doi.org/doi.org/10.4162/ nrp.2015.9.1.30

Haber CA, Lam TKT, Yu Z, Gupta N, Goh T, Bogdanovic E, et al. N-acetylcysteine and taurine prevent hyperglycemia-induced insulin resistance in vivo: possible role of oxidative stress. Am J Physiol Endocrinol Metab . 2003;285(4):E744-E753. doi.org/10.1152/ajpendo.00355.2002.

» https://doi.org/doi.org/10.1152/ajpendo.00355.2002

Harada H, Isujino T, Watari Y, Nonaka H, Emoto N, Yokoyama M. Oral taurine supplementation prevents fructose-induced hypertension in rats. Heart Vessels. 2004;19(3):132-136. doi. org/10.1007/s00380-003-0757-1.

» https://doi.org/doi. org/10.1007/s00380-003-0757-1

Ho XL,Tsen SY, Ng MY, Lee WN, Low A, Loke WM. Aged garlic supplement protects against lipid peroxidation in hypercholesterolemic individuals. J Med Food. 2016;19(10):931-937. doi.org/10.1089/jmf.2016.3693.

» https://doi.org/doi.org/10.1089/jmf.2016.3693

Iliya IA, Mohammed B, Akuyam SA, Yaro JD, Bauchi ZM, Tanko M, et al. Immunohistochemical evaluation of the antidiabetic potentials of S-allyl-cysteine (Garlic) and mangiferin (Mango) in type 2 diabetic rat models. Sub-Saharan Afr J Med. 2016;3(1):25-31. doi.org/10.4103/2384-5147.176305.

» https://doi.org/doi.org/10.4103/2384-5147.176305

Ito T, Schaffer SW, Azuma J. The potential usefulness of taurine on diabetes mellitus and its complications. Amino Acids. 2012;42(5):1529-39. doi.org/10.1007/s00726-011-0883-5.

» https://doi.org/doi.org/10.1007/s00726-011-0883-5

Jaffe M. Ueber den Niederschlag welchen Pikrinsäure in normalen Harn erzeugt und über eine neue reaction des Kreatinins. Z Physiol Chem. 1886;10(5):391-400.

Khan HA, Sobki SH, Khan SA. Association between glycaemic control and serum lipids profile in type 2 diabetic patients: HbA1c predicts dyslipidaemia. Clin Exp Med. 2007;7(1):24-29. doi.org/10.1007/s10238-007-0121-3.

» https://doi.org/doi.org/10.1007/s10238-007-0121-3

Kim HY, Kim HV, Yoon JH, Kang BR, Cho SM, Lee S, et al. Taurine in drinking water recovers learning and memory in the adult APP/PS1 mouse model of Alzheimer’s disease. Sci Rep. 2014;4:7467. doi.org/10.1038/srep07467.

» https://doi.org/doi.org/10.1038/srep07467

Kim JH, Yu SH, Cho YJ, Pan JH, Cho HT, Kim JH, et al. Preparation of S-Allylcysteine-Enriched Black Garlic Juice and Its Antidiabetic Effects in Streptozotocin-Induced Insulin-Deficient Mice. J Agric Food Chem. 2017;65(2):358-363. doi.org/10.1021/acs.jafc.6b04948.

» https://doi.org/doi.org/10.1021/acs.jafc.6b04948

Kind PR, King EJ. Estimation of plasma phosphatase by determination of hydrolysed phenol with amino-antipyrine. J Clin Pathol. 1954;7(4):322-326. doi.org/10.1136/jcp.7.4.322.

» https://doi.org/doi.org/10.1136/jcp.7.4.322

Kobuchi H, Virgili F, Packer L. Assay of inducible form of nitric oxide synthase activity: effect of flavonoids and plant extracts. Methods Enzymol. 1999;301:504-513. doi. org/10.1016/s0076-6879(99)01113-1.

» https://doi.org/doi. org/10.1016/s0076-6879(99)01113-1

Kosuge Y. Neuroprotective mechanisms of S-allyl-L-cysteine in neurological disease. Exp Ther Med. 2020;19(2):1565-1569. doi.org/10.3892/etm.2019.8391.

» https://doi.org/doi.org/10.3892/etm.2019.8391

Kotha P, Badri KR, Nagalapuram R, Allagadda R, Chippada AR. Anti-Diabetic Potential of the Leaves of Anisomeles malabarica in Streptozotocin Induced Diabetic Rats. Cell Physiol Biochem. 2017;43(4):1689-1702. doi. org/10.1159/000484030.

» https://doi.org/doi. org/10.1159/000484030

Kumar S, Goel RK. Taurine supplementation to anti-seizure drugs as the promising approach to treat pharmacoresistant epilepsy: A pre-clinical study. Int J Epilepsy. 2017;4:119-124. doi.org/10.1016/j.ijep.2017.07.001.

» https://doi.org/doi.org/10.1016/j.ijep.2017.07.001

Maiti R, Das UK, Ghosh D. Attenuation of hyperglycemia and hyperlipidemia in streptozotocin-induced diabetic rats by aqueous extract of seed of Tamarindus indica. Biol Pharm Bull. 2005;28(7):1172-1176. doi.org/10.1248/bpb.28.1172.

» https://doi.org/doi.org/10.1248/bpb.28.1172

Masiello P, Broca C, Gross R, Roye M, Manteghetti M, Hillaire-Buys D, et al. Experimental NIDDM: development of a new model in adult rats administered streptozotocin and nicotinamide. Diabetes . 1998;47(2):224-229. doi.org/10.2337/ diab.47.2.224.

» https://doi.org/doi.org/10.2337/ diab.47.2.224

Mitchell FL, Veall N, Watts RWE. Renal Function Tests Suitable for Clinical Practice. Ann Clin Biochem. 1972;9(1-6):1-20. doi.org/10.1177/000456327200900101.

» https://doi.org/doi.org/10.1177/000456327200900101

Mohamed AK, Bierhaus A, Schiekofer S, Tritschler H, Ziegler R, Nawroth PP. The role of oxidative stress and NF-kappaB activation in late diabetic complications. Biofactors. 1999;10(2-3):157-167. doi.org/10.1002/biof.5520100211.

» https://doi.org/doi.org/10.1002/biof.5520100211

Mong MC, Yin MC. Nuclear factor κB-dependent anti-inflammatory effects of s-allyl cysteine and s-propyl cysteine in kidney of diabetic mice. J Agric Food Chem . 2012;60(12):3158-65. doi.org/10.1021/jf3002685.

» https://doi.org/doi.org/10.1021/jf3002685

Nakagawat S, Kasuga S, Matsuura H. Prevention of liver damage by aged garlic extract and its components in mice. Phyto Res. 1989;3(2):50-53. doi.org/10.1002/ptr.2650030203.

» https://doi.org/doi.org/10.1002/ptr.2650030203

Nakamura-Yamanaka Y, Tsuji K, Ichikawa T. Effect of dietary taurine on cholesterol 7α-hydroxylase activity in the liver of mice fed a lithogenic diet. J Nutr Sci Vitaminol. 1987;33(3):239-243. doi.org/10.3177/jnsv.33.239.

» https://doi.org/doi.org/10.3177/jnsv.33.239

Nakaya Y, Minami A, Harada N, Sakamoto S, Niwa Y, Ohnaka M. Taurine improves insulin sensitivity in the Otsuka Long-Evans Tokushima Fatty rat, a model of spontaneous type 2 diabetes. Am J Clin Nutr. 2000;71(1):54-58. doi.org/10.1093/ajcn/71.1.54.

» https://doi.org/doi.org/10.1093/ajcn/71.1.54

Nathan DM, Singer DE, Hurxthal K, Goodson JD. The clinical information value of the glycosylated hemoglobin assay. N Engl J Med. 1984;310(6):341-346. doi.org/10.1056/ nejm198402093100602.

» https://doi.org/doi.org/10.1056/ nejm198402093100602

Ouellet V, Weisnagel SJ, Joanisse DR, Lavigne C, Dort J, Marette A, et al. Beneficial Impact of Cod Protein, L-Arginine, and Other Amino Acids on Insulin Sensitivity. In: Patel VB, Preedy VR, Rajendram R, editor. L-Arginine in Clinical Nutrition. Nutrition and Health: Humana Press; 2017. p. 433-447. doi.org/10.1007/978-3-319-26009-9_34.

» https://doi.org/doi.org/10.1007/978-3-319-26009-9_34

Parveen K, Ishrat T, Malik S, Kausar MA, Siddiqui WA. Modulatory effects of Pycnogenol in a rat model of insulin-dependent diabetes mellitus: biochemical, histological, and immunohistochemical evidences. Protoplasma. 2013;250(1):347-360. doi.org/10.1007/s00709-012-0418-2.

» https://doi.org/doi.org/10.1007/s00709-012-0418-2

Parveen K, Siddiqui WA, Kausar MA, Kuddus M, Shahid SMA, Arif JM. Diabetic nephropathy-a major macrovascular complication. Int J Pharm Res Allied Sci. 2016;5(4): 132-158.

Rachek LI. Free fatty acids and skeletal muscle insulin resistance. Prog Mol Biol Transl Sci. 2014;121:267-292. doi. org/10.1016/B978-0-12-800101-1.00008-9.

» https://doi.org/doi. org/10.1016/B978-0-12-800101-1.00008-9

Rodella P, Takase LF, Santos JLD, Scarim CB, Vizioli EDO, Chin CM. The Effect of Taurine on Hepatic Disorders [Version 1, 2 Approved with Reservation]. Curr Updates Hepatol Gastroenterol. 2017;1:1.1.

Saravanan G, Ponmurugan P, Kumar GPS, Rajarajan T. Antidiabetic properties of S-allyl cysteine, a garlic component on streptozotocin-induced diabetes in rats. J Appl Biomed. 2009;7:151-159. doi.org/10.32725/jab.2009.017.

» https://doi.org/doi.org/10.32725/jab.2009.017

Saravanan G, Ponmurugan P. Ameliorative potential of S-allyl cysteine on oxidative stress in STZ induced diabetic rats. Chem Biol Interact. 2011;189(1-2):100-106. doi. org/10.1016/j.cbi.2010.10.001.

» https://doi.org/doi. org/10.1016/j.cbi.2010.10.001

Sarkar P, Basak P, Ghosh S, Kundu M, Sil PC. Prophylactic role of taurine and its derivatives against diabetes mellitus and its related complications. Food Chem Toxicol. 2017;110:109-121. doi.org/10.1016/j.fct.2017.10.022.

» https://doi.org/doi.org/10.1016/j.fct.2017.10.022

Schreck R, Albermann K, Baeuerle PA. Nuclear factor kappa B: an oxidative stress-responsive transcription factor of eukaryotic cells (a review). Free Radical Res Commun. 1992;17(4):221-237. doi.org/10.3109/10715769209079515.

» https://doi.org/doi.org/10.3109/10715769209079515

Sirdah MM. Protective and therapeutic effectiveness of taurine in diabetes mellitus: A rationale for antioxidant supplementation. Diabetes Metab Syndr. 2015;9(1):55-64. doi.org/10.1016/j.dsx.2014.05.001.

» https://doi.org/doi.org/10.1016/j.dsx.2014.05.001

Stamler J, Vaccaro O, Neaton JD, Wentworth D. Diabetes , other risk factors, and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care. 1993;16(2):434-444. doi.org/10.2337/ diacare.16.2.434.

» https://doi.org/doi.org/10.2337/ diacare.16.2.434

Stein EA, Myers GL. National Cholesterol Education Program recommendations for triglyceride measurement: executive summary. The National Cholesterol Education Program Working Group on Lipoprotein Measurement. Clin Chem. 1995;41(10):1421-1426. doi.org/10.1093/clinchem/41.10.1421.

» https://doi.org/doi.org/10.1093/clinchem/41.10.1421

Surh YJ, Chun KS, Cha HH, Han SS, Keum YS, Park KK, et al. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutat Res. 2001;480-481:243-268. doi. org/10.1016/s0027-5107(01)00183-x.

» https://doi.org/doi. org/10.1016/s0027-5107(01)00183-x

Takemura S, Minamiyama Y, Kodai S, Shinkawa H, Tsukioka T, Okada S, et al. S-Allyl cysteine improves nonalcoholic fatty liver disease in type 2 diabetes Otsuka Long-Evans Tokushima Fatty rats via regulation of hepatic lipogenesis and glucose metabolism. J Clin Biochem Nutr. 2013;53(2):94-101. doi.org/10.3164/jcbn.13-1.

» https://doi.org/doi.org/10.3164/jcbn.13-1

Trinder P. Determination of blood glucose using an oxidase-peroxidase system with a non-carcinogenic chromogen. J Clin Pathol . 1969;22(2):158-161. doi.org/10.1136/jcp.22.2.158.

» https://doi.org/doi.org/10.1136/jcp.22.2.158

Uddandrao VVS, Brahmanaidu P, Ravindarnaik R, Suresh P, Vadivukkarasi S, Saravanan G. Restorative potentiality of S-allylcysteine against diabetic nephropathy through attenuation of oxidative stress and inflammation in streptozotocin-nicotinamide-induced diabetic rats. Eur J Nutr. 2019;58(6):2425-2437. doi.org/10.1007/s00394-018-1795-x.

» https://doi.org/doi.org/10.1007/s00394-018-1795-x

Uddandrao VVS, Brahmanaidu P, Saravanan G. Therapeutical perspectives of S-allylcysteine: effect on diabetes and other disorders in animal models. Cardiovasc Hematol Agents Med Chem. 2017;15(2):71-77. doi.org/10.217 4/1871525714666160418114120.

» https://doi.org/doi.org/10.217 4/1871525714666160418114120

Wybenga DR, Giorgio JD, Pileggi VJ. Manual and automated methods for urea nitrogen measurement in whole serum. Clin Chem . 1971;17(9):891-895. doi.org/10.1093/ clinchem/17.9.891.

» https://doi.org/doi.org/10.1093/ clinchem/17.9.891

Wybenga DR, Pileggi VJ, Dirstine PH, Di Giorgio J. Direct Manual Determination of Serum Total Cholesterol with a Single Stable Reagent. Clin Chem . 1970;16(12):980-984. doi. org/10.1093/clinchem/16.12.980.

» https://doi.org/doi. org/10.1093/clinchem/16.12.980

Yokogoshi H, Mochizuki H, Nanami K, Hida Y, Miyachi F, Oda H. Dietary taurine enhances cholesterol degradation and reduces serum and liver cholesterol concentrations in rats fed a high-cholesterol diet. J Nutr. 1999;129(9):1705-1712. doi.org/10.1093/jn/129.9.1705.

» https://doi.org/doi.org/10.1093/jn/129.9.1705

Downloads

Publicado

2023-02-06

Edição

Seção

Original Article

Como Citar