Preparation and in vitro evaluation of Vancomycin loaded Montmorillonite-Sodium Alginate topical gel for wound infection

Authors

  • Ladan Dayani Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran https://orcid.org/0000-0001-9931-4664
  • Azade Taheri Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran https://orcid.org/0000-0002-2256-040X
  • Somayeh Taymouri Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran https://orcid.org/0000-0001-6089-8367
  • Rahim Bahri Najafi Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
  • Fereshteh Esmaeilian Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran

DOI:

https://doi.org/10.1590/s2175-97902022e21034

Keywords:

Montmorillonite, Sodium alginate, Vancomycin, Wound healing, Antibacterial effect, Gel

Abstract

Despite decades of research, wound healing remains a significant public health problem. This study aimed to develop and evaluate a topical sodium alginate gel containing vancomycin (Van) loaded MMT NPs for wound healing applications. Van was loaded in MMT at different conditions (pHs of 6, 7 and temperatures of 40, 50 °C) (Van/MMT NPs). The optimum formulation (with the smallest particle size and a high value of zeta potential; 270.8 ± 77.35 nm and -35.96 ± 2.73, respectively) showed a high drug-loading capacity (entrapment efficacy of 96%) and a sustained release pattern of Van (95%) over 480 min. The optimum Van/MMT NPs were embedded into the sodium alginate (SA) gel (Van/MMT NPs/SA gel). The Van/ MMT NPs/SA gel showed a sustained and slow release pattern of Van (95%) over 50 h. FTIR tests revealed the electrostatic interaction between MMT and Van. The broth macrodilution tube method was used to determine the minimum inhibitory concentration (MIC) of Van, Van/ MMT NPs, and Van/MMT NPs/SA gel against Staphylococcus aureus. The results showed the promising antibacterial activity of Van/MMT NPs/SA gel, thus, this gel can be a promising formulation for the management of infected wounds.

Downloads

Download data is not yet available.

References

Ashtikar M, Wacker M. Nanopharmaceuticals for wound healing -Lost in translation? Adv Drug Delivery Rev. 2018;129(1):194-218.

Booysen E, Bezuidenhout M, van Staden ADP, Dimitrov D, Deane SM, Dicks LMT. Antibacterial activity of vancomycin encapsulated in Poly(DL-lactide-co-glycolide) nanoparticles using electrospraying. Probiotics Antimicrob Proteins. 2019;11(1):310-6.

Chen H-B, Wang Y-Z, Sanchez-Soto M, Schiraldi D. Low flammability, foam-like materials based on ammonium alginate and sodium montmorillonite clay. Polymer (Guildf). 2012;53(25):5825-5831.

Dar B, Pandey N, Singh S, Kumar P, Farooqui M, Singh B. Solvent-free, scalable and expeditious synthesis of benzanilides under microwave irradiation using clay doped with palladium nanoparticles as a recyclable and efficient catalyst. Green Chem Lett Rev. 2015;8(2):1-8.

Dening TJ, Joyce P, Rao S, Thomas N, Prestidge CA. Nanostructured montmorillonite clay for controlling the lipase-mediated digestion of medium chain triglycerides. ACS Appl Mater Interfaces. 2016;8(48):32732-42.

Dong Y, Feng S-S. Poly (d,l-lactide-co-glycolide)/ montmorillonite nanoparticles for oral delivery of anticancer drugs. Biomaterials. 2005;26(30):6068-76.

Feng S-S, Mei L, Anitha P, Gan CW, Zhou W. Poly(lactide)- vitamin E derivative/montmorillonite nanoparticle formulations for the oral delivery of Docetaxel. Biomaterials . 2009;30(19):3297-306.

Gelker M, Müller-Goymann CC, Viöl W. Permeabilization of human stratum corneum and full-thickness skin samples by a direct dielectric barrier discharge. Clin Plasma Med. 2018;9:34-40.

Gonzalez AC de O, Costa TF, Andrade Z de A, Medrado ARAP. Wound healing-A literature review. An Bras Dermatol. 2016;91(5):614-20.

Han G, Ceilley R. Chronic wound healing: a review of current management and treatments. Adv Ther. 2017;34(3):599-610.

Hey HWD, Thiam DW, Koh ZSD, Thambiah JS, Kumar N, Lau L-L, et al. Is intraoperative local vancomycin powder the answer to surgical site infections in spine surgery? Spine (Phila Pa 1976). 2017;42(4):267-74.

Joshi G V, Kevadiya BD, Patel HA, Bajaj HC, Jasra R V. Montmorillonite as a drug delivery system: intercalation and in vitro release of timolol maleate. Int J Pharm. 2009;374(2):53-7.

Kim H-W, Knowles JC, Kim H-E. Hydroxyapatite porous scaffold engineered with biological polymer hybrid coating for antibiotic Vancomycin release. J Mater Sci Mater Med [Internet]. 2005;16(3):189-95.

Koga AY, Felix JC, Silvestre RGM, Lipinski LC, Carletto B, Kawahara FA, et al. Evaluation of wound healing effect of alginate film containing Aloe vera gel and cross-linked with zinc chloride. Acta Cir Bras. 2020;35(5):1-11.

Krzyszczyk P, Schloss R, Palmer A, Berthiaume F. The role of macrophages in acute and chronic wound healing and interventions to promote pro-wound healing phenotypes. Front Physiol. 2018;9:419-41.

Kumar A, Hodnett BK, Hudson S, Davern P. Modification of the zeta potential of montmorillonite to achieve high active pharmaceutical ingredient nanoparticle loading and stabilization with optimum dissolution properties. Colloids Surf B Biointerfaces. 2020;193:1-11.

Kurczewska J, Sawicka P, Ratajczak M, Gajęcka M, Schroeder G. Will the use of double barrier result in sustained release of vancomycin? Optimization of parameters for preparation of a new antibacterial alginate-based modern dressing. Int J Pharm . 2015;496(2):526-33.

Li B, Brown K V, Wenke JC, Guelcher SA. Sustained release of vancomycin from polyurethane scaffolds inhibits infection of bone wounds in a rat femoral segmental defect model. J Control Release. 2010;145(3):221-30.

Masson R, Vuagnat H, Uçkay I, Toutous-Trellu L, Prendki V. Infection of chronic wounds in elderly patients. Rev Med Suisse. 2017;13(582):1938-44.

Meng N, Zhou N-L, Zhang S-Q, Shen J. Controlled release and antibacterial activity chlorhexidine acetate (CA) intercalated in montmorillonite. Int J Pharm . 2009;382(1):45-9.

Menke NB, Ward KR, Witten TM, Bonchev DG, Diegelmann RF. Impaired wound healing. Clin Dermatol. 2007;25(1):19-25.

Norrish K. The swelling of montmorillonite. Discuss Faraday Soc. 1954;18:120-34.

Rebitski EP, Aranda P, Darder M, Carraro R, Ruiz-Hitzky E. Intercalation of metformin into montmorillonite. Dalton Trans. 2018;47(9):3185-92.

Rossi S, Mori M, Vigani B, Bonferoni MC, Sandri G, Riva F, et al. A novel dressing for the combined delivery of platelet lysate and vancomycin hydrochloride to chronic skin ulcers: Hyaluronic acid particles in alginate matrices. Eur J Pharm Sci. 2018;118:87-95.

Sabiu B, Mohammed-Dabo IA, Dewu B, Momoh OR, Hamisu A, Abubakar Zaria U, et al. Determination of morphological features and molecular interactions of Nigerian bentonitic clays using Scanning Electron Microscope (SEM). Bayero J Pure Appl Sci. 2017;22(9):279.

Salcedo I, Aguzzi C, Sandri G, Bonferoni MC, Mori M, Cerezo P, et al. In vitro biocompatibility and mucoadhesion of montmorillonite chitosan nanocomposite: A new drug delivery. Appl Clay Sci. 2012;55:131-7.

Sandri G, Bonferoni MC, Ferrari F, Rossi S, Aguzzi C, Mori M, et al. Montmorillonite-chitosan-silver sulfadiazine nanocomposites for topical treatment of chronic skin lesions: In vitro biocompatibility, antibacterial efficacy and gap closure cell motility properties. Carbohydr Polym. 2014;102:970-7.

Schweizer ML, Chiang H-Y, Septimus E, Moody J, Braun B, Hafner J, et al. Association of a bundled intervention with surgical site infections among patients undergoing cardiac, hip, or knee surgery. JAMA. 2015;313(21):2162-71.

Stacey M. Combined topical growth factor and protease inhibitor in chronic wound healing: Protocol for a randomized controlled proof-of-concept study. JMIR Res Protoc. 2018;7(4):97-108.

Tan WS, Arulselvan P, Ng S-F, Mat Taib CN, Sarian MN, Fakurazi S. Improvement of diabetic wound healing by topical application of Vicenin-2 hydrocolloid film on Sprague Dawley rats. BMC Complementary Altern Med. 2019;19(1):20.

Tønnesen HH, Karlsen J. Alginate in drug delivery systems. Drug Dev Ind Pharm. 2002;28(6):621-30.

Wang X, Du Y, Luo J. Biopolymer/montmorillonite nanocomposite: preparation, drug-controlled release property and cytotoxicity. Nanotechnology. 2008;19(6):1-8.

Wu Q, Li Z, Hong H. Adsorption of the quinolone antibiotic nalidixic acid onto montmorillonite and kaolinite. Appl Clay Sci . 2013;74:66-73.

Zhao Y, Li J, Han X, Tao Q, Liu S, Jiang G, et al. Dual controlled release effect of montmorillonite loaded polymer nanoparticles for ophthalmic drug delivery. Appl Clay Sci . 2019;180:105-113.

Zhang Y, Liang RJ, Xu JJ, Shen LF, Gao JQ, Wang XP, et al. Efficient induction of antimicrobial activity with vancomycin nanoparticle-loaded poly (trimethylene carbonate) localized drug delivery system. Int J Nanomed. 2017;12:1201.

Zheng JP, Luan L, Wang HY, Xi LF, Yao KD. Study on ibuprofen/montmorillonite intercalation composites as drug release system. Appl Clay Sci . 2007;36(4):297-301.

Downloads

Published

2023-02-08

Issue

Section

Original Article

How to Cite

Preparation and in vitro evaluation of Vancomycin loaded Montmorillonite-Sodium Alginate topical gel for wound infection. (2023). Brazilian Journal of Pharmaceutical Sciences, 58. https://doi.org/10.1590/s2175-97902022e21034