The Effect of Anakinra on Acrylamide-induced Peripheral Neuropathy and Neuropathic Pain in Rats

Authors

  • Alevtina Ersoy Department of Neurology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey https://orcid.org/0000-0002-4968-0786
  • Ceyda Tanoglu Department of Neurology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey
  • Gulce Naz Yazici Department of Histology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey
  • Abdülkadir Çoban Department of Biochemistry, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey
  • Renad Mammadov Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey
  • Halis Suleyman Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey https://orcid.org/0000-0002-9239-4099

DOI:

https://doi.org/10.1590/s2175-97902022e21010

Keywords:

Acrylamide, Anakinra, Oxidative stress, Inflammation, Sciatic nerve injury, Neuropathic pain

Abstract

Acrylamide is a neurotoxic compound. Moreover, anakinra is an interleukin-1 (IL-1) receptor antagonist used in rheumatoid arthritis treatment. This study investigated the effect of anakinra on acrylamide-related neuropathy and neuropathic pain. Acrylamide exposure caused a significant decrease in the pain threshold; an increase in malondialdehyde (MDA), tumor necrosis factor-alpha (TNF-α), and interleukin-1 beta (IL-1β) levels; and a decrease in total glutathione (tGSH) values in the sciatic nerve. This indicates hyperalgesia presence, oxidative stress, and peripheral nerve tissue inflammation. Anakinra treatment significantly reduced the MDA, IL-1β, and TNF-α levels, and increased the pain threshold and mean tGSH values. The analgesic effect of anakinra was 67.9% at the first hour, increasing to 74.9% and 76.7% at the second and third hours, respectively. The group receiving acrylamide exhibited histopathological changes (e.g., swollen and degenerated axons, hypertrophic and hyperplasic Schwann cells, and congested vessels). The use of anakinra significantly improved these morphological changes. Anakinra is concluded to reduce neuropathic pain and prevent neurotoxic effect of acrylamide on peripheral nerves due to its analgesic, antioxidant, and anti-inflammatory properties.

Downloads

Download data is not yet available.

References

Ahmad Bainmahfouz FR, Ali SS, Al-Shali RA, El-Shitany NAE. Vitamin E and 5-amino salicylic acid ameliorates acrylamide-induced peripheral neuropathy by inhibiting caspase-3 and inducible nitric oxide synthase immunoexpression. J Chem Neuroanat. 2021;113:101935.

Amin B, Poureshagh E, Hosseinzadeh H. The effect of verbascoside in neuropathic pain induced by chronic constriction injury in rats. Phytother Res. 2016;30(1):128-135.

Baamonde A, Curto-Reyes V, Juárez L, Meana A, Hidalgo A, Menéndez L. Antihyperalgesic effects induced by the IL-1 receptor antagonist anakinra and increased IL-1beta levels in inflamed and osteosarcoma-bearing mice. Life Sci. 2007;81(8):673-682.

Blasiak J, Gloc E, Wozniak K, Czechowska A. Genotoxicity of acrylamide in human lymphocytes. Chem Biol Interact. 2004;149(2-3):137-149.

Brismar T, Hildebrand C, Tegnér R. Nodes of Ranvier in acrylamide neuropathy: voltage clamp and electron microscopic analysis of rat sciatic nerve fibres at proximal levels. Brain Res. 1987;423(1-2):135-143.

Cadirci E, Suleyman H, Hacimuftuoglu A, Halici Z, Akcay F. Indirect role of beta2-adrenergic receptors in the mechanism of analgesic action of nonsteroidal antiinflammatory drugs. Crit Care Med. 2010;38(9):1860-1867.

Calleman CJ, Wu Y, He F, Tian G, Bergmark E, Zhang S, et al. Relationships between biomarkers of exposure and neurological effects in a group of workers exposed to acrylamide. Toxicol Appl Pharmacol. 1994;126(2):361-371.

Colloca L, Ludman T, Bouhassira D, Baron R, Dickenson AH, Yarnitsky D, et al. Neuropathic pain. Nat Rev Dis Primers. 2017;3:17002.

Cvetkovic RS, Keating G. Anakinra. BioDrugs. 2002;16(4):303-311; discussion 313-304.

Elblehi SS, El Euony OI, El-Sayed YS. Apoptosis and astrogliosis perturbations and expression of regulatory inflammatory factors and neurotransmitters in acrylamide-induced neurotoxicity under ω3 fatty acids protection in rats. Neurotoxicology. 2020;76:44-57.

Erkekoglu P, Baydar T. Acrylamide neurotoxicity. Nutr Neurosci. 2014:17(2):49-57.

Farag OM, Abd-Elsalam RM, Ogaly HA, Ali SE, El Badawy SA, Alsherbiny MA, et al. Metabolomic profiling and neuroprotective effects of purslane seeds extract against acrylamide toxicity in Rat’s brain. Neurochem Res. 2021;46(4):819-842.

Gold BG, Voda J, Yu X, Gordon H. The immunosuppressant FK506 elicits a neuronal heat shock response and protects against acrylamide neuropathy. Exp Neurol. 2004;187(1):160-170.

Gonçalves NP, Teixeira-Coelho M, Saraiva MJ. Protective role of anakinra against transthyretin-mediated axonal loss and cell death in a mouse model of familial amyloidotic polyneuropathy. J Neuropathol Exp Neurol . 2015;74(3):203-217.

Goudarzi M, Mombeini MA, Fatemi I, Aminzadeh A, Kalantari H, Nesari A, et al. Neuroprotective effects of ellagic acid against acrylamide-induced neurotoxicity in rats. Neurol Res. 2019:41(5):419-428.

Guo J, Cao X, Hu X, Li S, Wang J. The anti-apoptotic, antioxidant and anti-inflammatory effects of curcumin on acrylamide-induced neurotoxicity in rats. BMC Pharmacol Toxicol. 2020:21(1):62.

Hagmar L, Törnqvist M, Nordander C, Rosén I, Bruze M, Kautiainen A, et al. Health effects of occupational exposure to acrylamide using hemoglobin adducts as biomarkers of internal dose. Scand J Work Environ Health. 2001;27(4):219-226.

Hasturk AE, Yilmaz ER, Turkoglu E, Arikan M, Togral G, Hayirli N, et al. Potential neuroprotective effect of anakinra in spinal cord injury in an in vivo experimental animal model. Neurosciences (Riyadh). 2015a;20(2):124-130.

Hasturk AE, Yilmaz ER, Turkoglu E, Kertmen H, Horasanli B, Hayirli N, et al. Therapeutic evaluation of interleukin 1-beta antagonist anakinra against traumatic brain injury in rats. Ulus Travma Acil Cerrahi Derg. 2015b;21(1):1-8.

Hsieh CT, Lee YJ, Lee JW, Lu S, Tucci MA, Dai X, et al. Interleukin-1 receptor antagonist ameliorates the pain hypersensitivity, spinal inflammation and oxidative stress induced by systemic lipopolysaccharide in neonatal rats. Neurochem Int. 2020;135:104686.

Ince I, Aksoy M, Ahiskalioglu A, Comez M, Dostbil A, Celik M, et al. A comparative investigation of the analgesic effects of Metamizole and paracetamol in rats. J Invest Surg. 2015;28(3):173-180.

Ko MH, Chen WP, Hsieh ST. Neuropathology of skin denervation in acrylamide-induced neuropathy. Neurobiol Dis. 2002;11(1):155-165.

Kuyrukluyıldız U, Küpeli İ, Bedir Z, Özmen Ö, Onk D, Süleyman B, et al. The effect of anakinra on paclitaxel-induced peripheral neuropathic pain in rats. Turk J Anaesthesiol Reanim. 2016;44(6):287-294.

Ling B, Authier N, Balayssac D, Eschalier A, Coudore F. Assessment of nociception in acrylamide-induced neuropathy in rats. Pain. 2005;119(1-3):104-112.

Lingnert H, Grivas S, Jägerstad M, Skog K, Törnqvist M, Åman P. Acrylamide in food: mechanisms of formation and influencing factors during heating of foods. Scand J Nutr. 2002;46(4):159-172.

LoPachin RM. The changing view of acrylamide neurotoxicity. Neurotoxicology . 2004;25(4):617-630.

Marchettini P, Lacerenza M, Mauri E, Marangoni C. Pain ful peripheral neuropathies. Curr Neuropharmacol. 2006;4(3):175-181.

Navarro X, Verdú E, Guerrero J, Butí M, Goñalons E. Abnormalities of sympathetic sudomotor function in experimental acrylamide neuropathy. J Neurol Sci. 1993;114(1):56-61.

Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95(2):351-358.

Perez-Saad H, Subiros N, Berlanga J, Aldana L, Garcia Del Barco D. Neuroprotective effect of epidermal growth factor in experimental acrylamide neuropathy: an electrophysiological approach. J Peripher Nerv Syst. 2017;22(2):106-111.

Ralevic V, Aberdeen JA, Burnstock G. Acrylamide-induced autonomic neuropathy of rat mesenteric vessels: histological and pharmacological studies. J Auton Nerv Syst. 1991;34(1):77-87.

Randall LO, Selitto JJ. A method for measurement of analgesic activity on inflamed tissue. Arch Int Pharmacodyn Ther. 1957;111(4):409-419.

Schaumburg HH, Wiśniewski HM, Spencer PS. Ultrastructural studies of the dying-back process. I. Peripheral nerve terminal and axon degeneration in systemic acrylamide intoxication. J Neuropathol Exp Neurol . 1974;33(2):260-284.

Scherer G, Engl J, Urban M, Gilch G, Janket D, Riedel K. Relationship between machine-derived smoke yields and biomarkers in cigarette smokers in Germany. Regul Toxicol Pharmacol. 2007;47(2):171-183.

Seale SM, Feng, Agarwal AK, El-Alfy AT. Neurobehavioral and transcriptional effects of acrylamide in juvenile rats. Pharmacol Biochem Behav. 2012;101(1):77-84.

Sedlak J, Lindsay RH. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem . 1968;25(1):192-205.

Semla M, Goc Z, Martiniaková M, Omelka R, Formicki G. Acrylamide: a common food toxin related to physiological functions and health. Physiol Res. 2017;66(2):205-217.

Shipp A, Lawrence G, Gentry R, McDonald T, Bartow H, Bounds J, et al. Acrylamide: review of toxicity data and dose-response analyses for cancer and noncancer effects. Crit Rev Toxicol. 2006;36(6-7):481-608.

Smith EA, Oehme FW. Acrylamide and polyacrylamide: a review of production, use, environmental fate and neurotoxicity. Rev Environ Health. 1991;9(4):215-228.

Sun G, Qu S, Wang S, Shao Y, Sun J. Taurine attenuates acrylamide-induced axonal and myelinated damage through the Akt/GSK3β-dependent pathway. Int J Immunopathol Pharmacol. 2018;32:2058738418805322.

Tabeshpour J, Mehri S, Abnous K, Hosseinzadeh H. Neuroprotective effects of thymoquinone in acrylamide-induced peripheral nervous system toxicity through MAPKinase and apoptosis pathways in rat. Neurochem Res . 2019;44(5):1101-1112.

Tareke E, Rydberg P, Karlsson P, Eriksson S, Törnqvist M. Analysis of acrylamide, a carcinogen formed in heated foodstuffs. J Agric Food Chem. 2002;50(17):4998-5006.

Vanitha S, Thiagarajan VR, Muthuraman A, Krishnan S, Aruna A, Tharabai R. Pharmacological evaluation of methanolic leaf extract of Swietenia Mahagoni on acrylamide-induced neuropathic pain in rats. Toxicol Ind Health. 2015;31(12):1185-1194.

Xiao JW, Meng HL, Duan HW, Zhang ZR, Wang J, Yu T, et al. Effects of acrylamide on synaptic plasticity of rat neuron. Zhonghua Yu Fang Yi Xue Za Zhi. 2011;45(11):1022-1025.

Xu CW, Wu HF, Chen J. Clinical and electrophysiological features and treatment of acrylamide-induced toxic peripheral neuropathy. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi. 2020;38(1):45-47.

Yan D, Pan X, Yao J, Wang D, Wu X, Chen X, et al. MAPKs and NF-κB-mediated acrylamide-induced neuropathy in rat striatum and human neuroblastoma cells SY5Y. J Cell Biochem. 2019;120(3):3898-3910.

Alevtina Ersoy, Ceyda Tanoglu, Gulce Naz Yazici, Taha Abdulkadir Coban, Renad Mammadov, Halis Suleyman Zhang L, Wang E, Chen F, Yan H, Yuan Y. Potential protective effects of oral administration of allicin on acrylamide-induced toxicity in male mice. Food Funct. 2013;4(8):1229-1236.

Zhu YJ, Zeng T, Zhu YB, Yu SF, Wang QS, Zhang LP, et al. Effects of acrylamide on the nervous tissue antioxidant system and sciatic nerve electrophysiology in the rat. Neurochem Res . 2008;33(11):2310-2317.

Downloads

Published

2023-02-15

Issue

Section

Original Article

How to Cite

The Effect of Anakinra on Acrylamide-induced Peripheral Neuropathy and Neuropathic Pain in Rats. (2023). Brazilian Journal of Pharmaceutical Sciences, 58. https://doi.org/10.1590/s2175-97902022e21010