Fluid evolution from quartz veins in micaschists from the thermal aureole around the Acari batholith, Northeast Brazil

Authors

DOI:

https://doi.org/10.11606/issn.2316-9095.v21-160595

Keywords:

Fluid inclusions, Quartz veins, Micaschists, Thermal aureole, Fluid composition, Salinity

Abstract

Micaschists that host the Acari batholith (Ediacaran age, 572 to 577 My) are characterized by a large number of quartz veins. The veins are more abundant in higher-temperature metamorphic zones and, together with lower metamorphic zones, form an aureole centered in the batholith. Most of the fluid inclusions are two-phase (H2O-CO2 and liquid/vapor), but three-phase varieties (liquid/vapor/salt cubes; liquid/liquid/vapor) occur locally. The analyzed veins come from the biotite + chlorite + muscovite, biotite + garnet, cordierite + andalusite, and cordierite + sillimanite metamorphic zones. CO2 melting temperatures (TmCO2) vary from -62.6 to -56.7°C, suggesting CH4 and/or N2. Eutectic temperatures (Te) in quartz veins show average values of -30.8°C in the biotite + chlorite + muscovite and biotite + garnet zones, and -38.6°C in the cordierite + andalusite and cordierite + sillimanite zones. Ice-melting temperatures (Tmice) are lower in the higher-temperature metamorphic zones. The mode values are -3.8, -5.5, -5.6, and -7.3°C, corresponding respectively to the biotite + chlorite + muscovite, biotite + garnet, cordierite + andalusite, and cordierite + sillimanite zones. A fluid characterized by the H2O-Na-Cl (KCl)-MgCl2-FeCl2-CaCl2 system is defined by: Tmice from near -1.9 to -32°C, the presence of salt cubes mainly in the cordierite + andalusite and cordierite + sillimanite zones, and recorded eutectic temperatures (Te) from -16.5 to -59.1°C. In addition, total homogenization temperatures (Tht) ranging from 117 to 388°C were obtained for primary aqueous fluid inclusions. This indicates a long period of fluid circulation under conditions of falling temperatures. Our results are consistent with an increase in the salinity of the aqueous fluid across the thermal aureole toward the granitic batholith.

Downloads

Download data is not yet available.

References

Archanjo, C. J., Olivier, P., Boucher, J. L. (1992). Plutons granitiques du Seridó (NE Brésil) écoulement magmatique parallèle à la chaîne révélé par leur anisotropie magnétique. Bulletin de la Société Géologique de France, 163(4), 509-520. Available at: https://pubs.geoscienceworld.org/sgf/bsgf/article/163/4/509/122609/plutons-granitiques-du-serido-ne-dubresil. Accessed on: Sep 8, 2021.

Archanjo, C. J., Viegas, L. G. F., Hollanda, M. H. B. M., Souza L. C., Liu, D. (2013). Timing of the HT/LP transpression in the Neoproterozoic Seridó Belt (Borborema Province, Brazil): Constraints from U-Pb (SHRIMP) geochronology and implications for the connections between NE Brazil and West Africa. Gondwana Research, 23(2), 701-714. https://doi.org/10.1016/j.gr.2012.05.005

Bhattacharya, S., Panigrahi, M. K., Jayananda, M. (2014). Mineral thermobarometry and fluid inclusion studies on the Closepet granite, Eastern Dharwar Craton, south India: Implications to emplacement and evolution of late-stage fluid. Journal of Asian Earth Sciences, 91, 1-18. https://doi.org/10.1016/j.jseaes.2014.04.004

Bottinga, Y., Richet, P. (1981). High pressure and temperature 4equation of state and calculation of the thermodynamic properties of gaseous carbon dioxide. American Journal of Science, 281(5), 615-660. https://doi.org/10.2475/ajs.281.5.615

Brown, P. E. (1989). FLINCOR: a microcomputer program for the reduction and investigation of fluid-inclusion data. University of Wisconsin, Madison. American Mineralogist, 74(11), 1390-1393. Available at: https://www.researchgate.net/publication/279895263_FLINCOR_a_microcomputer_program_for_the_reduction_and_investigation_of_fluidinclusion_data. Accessed on: Sep 8, 2021.

Brown, P. E., Lamb, W. N. (1989). P-V-T properties of fluids in the system H2O-CO2-NaCl: New graphical presentations and implications for fluid inclusion studies. Geochimica et Cosmochimica Acta, 53(6), 1209-1221. https://doi.org/10.1016/0016-7037(89)90057-4

Bucher, K., Frey, M. (1994). Petrogenesis of metamorphic rocks. 6ª ed. Berlin: Springer-Verlag, 319 p. https://doi.org/10.1007/978-3-662-03000-4

Caby, R. (1989). Precambrian terranes of Benin-Nigeria and northeast Brazil and late proterozoic South Atlantic fit. In: R. D. Dallmeyer (Ed.), Terranes in the Circum-Atlantic Paleozoic Orogens, v. 230, p. 145-158. Geological Society of America, Special Paper. https://doi.org/10.1130/SPE230-p145

Campos, B. C. S., Vilalva, F. C. J., Nascimento, M. A. L., Galindo, A. C. (2016). Crystallization conditions of porphyritic high-K calc-alkaline granitoids in the extreme northeastern Borborema Province, NE Brazil, and geodynamic implications. Journal of South American Earth Sciences, 70, 224-236. https://doi.org/10.1016/j.jsames.2016.05.010

Carlson, W. D., Hixon, J. D., Garber J. M., Bodnar, R. J. (2015). Controls on metamorphic equilibration: the importance of intergranular solubilities mediated by fluid composition. Journal of Metamorphic Geology, 33(2), 123-146. https://doi.org/10.1111/jmg.12113

Crawford, M. L., Hollister, L. S. (1986). Metamorphic fluids: the evidence from fluid inclusions. In: V. Walther, B. J. Wood (Eds), Fluid-rock interactions during metamorphism, v. 5, p. 1-35. New York: Spring-Verlag. https://doi.org/10.1007/978-1-4612-4896-5_1

Dantas, E. L. (1997). Geocronologia U-Pb e Sm-Nd de terrenos arqueanos e paleoproterozoicos do maciço Caldas Brandão, NE do Brasil. Thesis (Doctorate). Rio Claro: Instituto de Geociências – UNESP, 218 p.

Dantas, E. L., Van Schmus, W. R., Hackspacher, P. C., Fetter, A. H., Brito Neves, B. B., Cordani, U., Nutman, A. P., Williams, I. S. (2004). The 3.4-3.5 São José de Campestre massif, NE Brazil: remnants of the oldest crust in South America. Precambrian Research, 130(1-4), 113-137. https://doi.org/10.1016/j.precamres.2003.11.002

Goldfarb, R. J., Groves, D. I. (2015). Orogenic gold: Common or evolving fluid and metal sources through time. Lithos, 233, 2-26. https://doi.org/10.1016/j.lithos.2015.07.011

Goldstein, R. H., Reynolds, T. J. (1994). Systematics of fluid inclusions in diagenetic minerals. USA, Society for Sedimentary Geology, v. 31, 199 p. https://doi.org/10.2110/scn.94.31

Hendel, E. M., Hollister, L. S. (1981). An empirical solvus for CO2-H2O-2.6 wt.% salt. Geochimica et Cosmochimica Acta, 45(2), 225-228. https://doi.org/10.1016/0016-7037(81)90166-6

Hollanda, M. H. B. M., Archanjo, C. J., Bautista, J. R., Souza, L. C. (2015). Detrital zircon ages and Nd isotope compositions of the Seridó and Lavras da Mangabeira basins (Borborema Province, NE Brazil): Evidence for exhumation and recycling associated with a major shift in sedimentary provenance. Precambrian Research, 258, 186-207. https://doi.org/10.1016/j.precamres.2014.12.009

Hollister, L. S. (1990). Enrichment of CO2 in fluid inclusion in quartz by removal of H2O during crystal-plastic deformation. Journal of Structural Geology, 12(7), 895-901. https://doi.org/10.1016/0191-8141(90)90062-4

Legrand, J. M., Martins Sá, J. (1986). Geotermometria, geobarometria e zonação metamórfica do sinforme de Cruzeta (RN), Brasil. XXXIV Congresso Brasileiro de Geologia. Anais, 4, 1407-1423. Goiânia: SBG.

Leterrier, J., Jardim de Sá, E. F., Bertrand, J. M., Pin, C. (1994). Ages U-Pb sur zircon de granitoïdes “brasilianos” de la ceinture Seridó (Province Borborema, NE Brésil). Comptes Rendus de l’Académie des Sciences, 318(11), 1505-1511.

Lima, E. S. (1986). Metamorphism and tectonic evolution in the Seridó region, Northeasthern Brazil. PhD Thesis. California: University of California, 208 p.

Luiz Silva, W. (1995). Estudos da interação fluido-rocha na área do depósito aurífero São Francisco, Currais Novos (RN): Aspectos estruturais e metamórficos. Dissertation (Master’s Degree). Rio Claro: UNESP, 183 p.

Miyashiro, A. (1994). Metamorphic Petrology. London: University College London Press, 404 p. Roedder, E. (1984). Fluid inclusions. Reviews in Mineralogy. Reston: Minerological Society of America, v. 12, 644 p.

Salim, J. (1993). Géologie, pétrologie et géochimie des skarns à scheelite de la mine Brejui, Currais Novos, NE du Brésil. Thesis (Doctorate). Louvain-la-Neuve, Belgique: Lab. de Géologie et Minéralogie – Université Catholique de Louvain, 272 p. Available at: https://hdl.handle.net/2078.1/205426. Accessed on: Sep 8, 2021.

Sirbescu, M. C., Nabelek, P. I. (2003). Crystallization conditions and evolution of magmatic fluids in the Harney Peak Granite and associated pegmatites, Black Hills, South Dakota - Evidence from fluid inclusions. Geochimica et Cosmochimica Acta, 67(13), 2443-2465. https://doi.org/10.1016/S0016-7037(02)01408-4

Souza, L. C. (1996). Zonéographie métamorphique, chimie des minéraux, pétrochimie, géochronologie 40Ar/39Ar et histoire P-T-t des micaschistes englobant le massif gabbrogranitique d’Acari (Brasiliano), ceinture mobile du Seridó (NE du Brésil). Thesis (Doctorate). Louvain-la-Neuve, Belgique: Laboratoire de Minéralogie et Géologie – Université Catholique de Louvain, 345 p.

Souza, L. C., Carvalho, A. C. (2015). Equilíbrios metamórficos a luz da solubilidade intergranular mediante fluidos hidrotermais nos micaxistos da Faixa Seridó, NE do Brasil. XXVI Simpósio de Geologia do Nordeste, 24, p. 92. Natal: SBG, Regional Nordeste.

Souza, L. C., Legrand, J. M., Verkaeren, J. (2007). Metamorfismo térmico nos micaxistos Seridó em torno do batólito de Acari (RN), nordeste do Brasil: Química mineral de ilmenitas e turmalinas. Revista Estudos Geológicos, 17(2), 71-84. Available at: http://www3.ufpe.br/estudosgeologicos/. Accessed on: Sep 8, 2021.

Souza, L. C, Verkaeren, J., Legrand, J. M., Sonnet, P. (1996). Le métamorphisme et la participation des fluides dans les micaschistes entourant le batholite gabbro-granitique d’Acari – NE du Brésil: Transfert de chaleur et dynamique des transformations. In: Reunion des Sciences de La Terre, Dynamique et Economie de La Terre. 16th Earth Sciences Meeting, p. 98. Orléans, France.

Spear, F. S., Peacock, S. M. (1990). Metamorphic P-T-path: Program manual and computer exercises for the calculation of metamorphic phase equilibria, pressure-temperature-time paths and thermal evolution of orogenic belts. Washington, D.C.: Geophys, Union, 188 p.

Swanenberg, H. E. C. (1980). Fluid inclusion in high-grade metamorphic rocks from S.W. Norway. Dissertation (Master’s Degree). Utrecht: Geologica Ultraiectina, University of Utrecht, 25, 147 p. Available at: http://dspace.library.uu.nl/handle/1874/217088. Accessed on: Sep 8, 2021.

Van Schmus, W. R., Brito Neves, B. B., Hackspacker, P. C., Babinski, M., Fetter, A., Dantas, E. (1995). Neoproterozoic and late mesoproterozoic sedimentary and volcanic sequences in the Borborema Province, NE Brazil. In: Simpósio de Geologia do Nordeste, 16., 391-393. Recife: SBG.

Van Schmus, W. R., Brito Neves, B. B., Williams, I. S., Hackspacher, P. C., Fetter, A. H., Dantas, E. L., Babinski, M. (2003). The Seridó Group of NE Brazil, a late Neoproterozoic pre- to syn- collisional basin in West Gondwana: insights from SHRIMPU–Pb detrital zircon ages and Sm–Nd crustal residence (TDM) ages. Precambrian Research, 127(4), 287-327. https://orcid.org/0000-0003-2125-3050

Vityk, M. O., Bodnar, R. J. (1995). Do fluid inclusions highgrade metamorphic terranes preserve peak metamorphic density during retrograde decompression? American Mineralogist, 80, 641-644. Available at: http://minsocam.org/msa/ammin/toc/articles_free/1995/vityk_p641-644_95. pdf. Accessed on: Sep 8, 2021.

Yardley, B. W. D., Bottrell, S. H. (1992). Silica mobility and fluid movement during metamorphism of the Connemara schists, Ireland. Journal of Metamorphic Geology, 10(3), 453-464. https://doi.org/10.1111/j.1525-1314.1992.tb00096.x

Downloads

Published

2021-11-23

Issue

Section

Articles

How to Cite

Souza, L. C. de ., Delgado, R. C. de O. B. ., & Maia, H. N. . (2021). Fluid evolution from quartz veins in micaschists from the thermal aureole around the Acari batholith, Northeast Brazil. Geologia USP. Série Científica, 21(4), 13-30. https://doi.org/10.11606/issn.2316-9095.v21-160595