Hydrogeochemistry of the Crystalline Aquifer System in the South of the state of Espírito Santo – Brazil

Authors

DOI:

https://doi.org/10.11606/issn.2316-9095.v21-168752

Keywords:

Groundwater, Fractured aquifers, Itapemirim River Watershed

Abstract

The groundwater demand in the state of Espírito Santo (Brazil) has been growing considerably due to the events of drought in recent years. However, the lack of hydrogeological knowledge compromises water-well location and the prediction of the quality of water, mainly where crystalline rocks occur. This work aimed to evaluate the hydrogeochemical and groundwater quality of the Crystalline Aquifer System in the Itapemirim River Watershed (BHRI), located in the Southern part of Espírito Santo, describing the compositional variations and the conditioners that control groundwater quality. The lithological and geomorphological compartmentalization of the watershed in addition to climatic conditions are the factors that influence the groundwater geochemistry
at a regional scale, while the land use and occupation exert a local influence. In the Upper BHRI portion, with steep relief and predominance of farming, there are mainly low-mineralized calcic bicarbonated and calcic-magnesian bicarbonated waters with components provided by the weathering of metamorphic and igneous silicate rocks. Although these are good quality waters, local changes can occur due to the presence of nitrate from human activities. In the Medium BHRI portion, with softer relief and lower topographic altitudes, groundwater is mainly of sodium chlorinated and sodium bicarbonated types, more mineralized due to the contribution of silicate rocks in association with carbonated lithotypes, such as marbles and calcium-silicate rocks. The climatic conditions, with higher temperatures and lower air humidity in the central area of the basin, which is topographically lower, can also contribute to mineral enrichment due to the evaporation of water in the soil.

Downloads

Download data is not yet available.

References

Agência Nacional de Águas (ANA). (2010). Bacias do Atlântico Sudeste. Disponível em: https://www.gov.br/ana/pt-br/as-12-regioes-hidrograficas-brasileiras/atlanticosudeste. Acesso em: 4 nov. 2021.

Banks, E. W., Simmons, C. T., Love, A. J., Cranswick, R., Werner, A. D., Bestland, E. A., Wood, M., Wilson, T. (2009). Fractured bedrock and saprolite hydrogeologic controls on groundwater/surface-water interaction: a conceptual model (Australia). Hydrogeology Journal, 17, 1969-1989. https://doi.org/10.1007/s10040-009-0490-7

Bochet, O., Bethencourt, L., Dufresne, A., Farasin, J., Pédrot, M., Labasque, T., Chatton, E., Lavenant, N., Petton, C., Abbot, B. W., Aquilina, L., Le Borgne, T. (2020). Ironoxidizer hotspots formed by intermittent oxic–anoxic fluid mixing in fractured rocks. Nature Geoscience, 13, 149-155. https://doi.org/10.1038/s41561-019-0509-1

Boutt, D. F., Diggins, P., Mabee, S. (2010). A field study (Massachusetts, USA) of the factors controlling the depth of groundwater flow systems in crystalline fractured-rock terrain. Hydrogeology Journal, 18(8), 1839-1854. https://doi.org/10.1007/s10040-010-0640-y

Brasil. Ministério da Saúde. (2017). Portaria nº 5, de 28 de setembro de 2017. Disponível em: http://bvsms.saude.gov.br/bvs/saudelegis/gm/2017/prc0005_03_10_2017.html. Acesso em: 29 abr. 2019.

Bucher, K., Zhu, Y., Stober, I. (2009). Groundwater in fractured crystalline rocks, the Clara mine, Black Forest (Germany). International Journal of Earth Science (Geol Rundsch), 98, 1727-1739. https://doi.org/10.1007/s00531-008-0328-x

Calegari, S. S., Aiolfi, T. R., Neves, M. A., Soares, C. C., Marques, R. A., Caxito, F. (2020). Filling materials in brittle structures as indicator of Cenozoic tectonic events in Southeastern Brazil. Anuário do Instituto de Geociências da UFRJ, 43(2), 237-254. https://doi.org/10.11137/2020_2_237_254

Ezaki, S., Oda, G. H., Iritani, M. A., Veiga, C., Stradioto, M. R. (2014). Hidroquímica dos aquíferos Tubarão e Cristalino na região de Indaiatuba-Rafard, Estado de São Paulo. Pesquisas em Geociências, 41(1), 65-79. https://doi.org/10.22456/1807-9806.78036

Foster, S. (2012). Hard-rock aquifers in tropical regions: using science to inform development and management policy. Hydrogeology Journal, 20, 659-672. https://doi.org/10.1007/s10040-011-0828-9

Geobases. (2002). Bases Cartográficas do Espírito Santo. Disponível em: http://www.geobases.es.gov.br/. Acesso em: 29 abr. 2019.

Gomes, M. C. R., Cavalcante, I. N. (2015). Análise geoquímica das águas subterrâneas de Fortaleza, Ceará – Brasil. Águas Subterrâneas, 29(1), 42-59. https://doi.org/10.14295/ras.v29i1.27917

Gradim, C., Roncato, J., Pedrosa-Soares, A. C., Cordani, U., Dussin, I., Alkmim, F. F., Queiroga, G., Jacobsohn, T., Silva, L. C., Babinski, M. (2014). The hot backarc zone of the Araçuaí orogen, Eastern Brazil: from sedimentation to granite generation. Brazilian Journal of Geology, 44(1), 155-180. https://doi.org/10.5327/Z2317-4889201400010012

Hem, J. D. (1985). Study and interpretation of chemical characteristics of natural water. 3. ed. USGS – United States Geological Survey. Disponível em: https://pubs.usgs.gov/wsp/wsp2254/pdf/wsp2254a.pdf. Acesso em: 14 set. 2021.

Henriksen, H. (1995). Relation between topography and well yield in boreholes in crystalline rocks, Sogn og Fjordane, Norway. Ground Water, 33(4), 635-643. https://doi.org/10.1111/j.1745-6584.1995.tb00319.x

Hounslow, A. W. (1995). Water quality data. Nova York e Boca Raton: Lewis Publishers.

Instituto Brasileiro de Geografia e Estatística (IBGE). (2010). Censo demográfico de 2010. Disponível em: https://censo2010.ibge.gov.br/sinopse/index.php?uf=32&dados=0. Acesso em: 2 jun. 2018.

Instituto Capixaba de Pesquisa, Assistência e Extensão Rural (INCAPER). (2016). Anomalia de Precipitação - 2016. Disponível em: https://meteorologia.incaper.es.gov.br/mapas-de-chuva-anomalia-mensal-e-anual-2016. Acesso em: 30 jan. 2020.

Instituto Capixaba de Pesquisa, Assistência e Extensão Rural (INCAPER). (2018). Precipitação Observada – 2018. Disponível em: https://meteorologia.incaper.es.gov.br/mapas-de-chuva-acumulado-mensal-e-anual-2018. Acesso em: 12 fev. 2020.

Iritani, M. A., Yoshinaga-Pereira, S., Ezaki, S., Oda, G. H., Ferreira, L. M. R. (2011). Caracterização hidroquímica das águas subterrâneas no Município de Itu (SP). Revista do Instituto Geológico, 32(1-2), 11-26. https://doi.org/10.5935/0100-929X.20110002

Lachassagne, P., Wyns, R., Dewandel, B. (2011). The fracture permeability of Hard Rock Aquifers is due neither to tectonics, nor to unloading, but to weathering processes. Terra Nova, 23(3), 145-161. https://doi.org/10.1111/j.1365-3121.2011.00998.x

Larsson, I. (1985). Aguas subterráneas en Rocas Duras. Proyecto 8.6 del Programa Hidrologico Internacional. Disponível em: https://unesdoc.unesco.org/ark:/48223/pf0000063230_spa. Acesso em: 12 fev. 2020.

Machiwal, D., Jha, M. (2015). Identifying sources of groundwater contamination in a hard-rock aquifer system using multivariate statistical analyses and GIS-based geostatistical modeling techniques. Journal of Hydrology: Regional Studies, 4(Parte A), 80-110. https://doi.org/10.1016/j.ejrh.2014.11.005

Menezes, J. M., Silva Júnior, G. C., Santos, R. T. (2008). Hidrogeoquímica de aquíferos fraturados: estudo de caso na bacia hidrográfica do Rio São Domingos, noroeste do estado do Rio de Janeiro. Águas Subterrâneas, 22(1), 75-90. https://doi.org/10.14295/ras.v22i1.8614

Neal, C., Kirchner, J. W. (2000). Sodium and chloride levels in rainfall, mist, streamwater and groundwater at the Plynlimon catchments, mid-Wales: inferences on hydrological and chemical controls. Hydrology and Earth System Sciences, 4(2), 295-310. https://doi.org/10.5194/hess-4-295-2000

Negrel, P., Pauwels, H., Dewandel, B., Gandolfi, J. M., Mascré, C., Ahmed, S. (2011). Understanding groundwater systems and their functioning through the study of stable water isotopes in a hard-rock aquifer (Maheshwaram watershed, India). Journal of Hydrology, 397(1-2), 55-70. https://doi.org/10.1016/j.jhydrol.2010.11.033

Peixoto-Oliveira, J., Neves, M. A., Calegari, S. S., Guadagnin, F. (2018). Compartimentação morfoestrutural da Bacia Hidrográfica do Rio Itapemirim, Sul do Estado do Espírito Santo. Geologia USP. Série Científica, 18(2), 57-70. https://doi.org/10.11606/issn.2316-9095.v18-134749

Praamsma, T., Novakowski, K., Kyser, K., Hall, K. (2009). Using stable isotopes and hydraulic head data to investigate groundwater recharge and discharge in a fractured rock aquifer. Journal of Hydrology, 366(1-4), 35-45. https://doi.org/10.1016/j.jhydrol.2008.12.011

Raju, N. J., Patel, P., Reddy, B. C. S. R., Suresh, U., Reddy, T. V. K. (2016). Identifying source and evaluation of hydrogeochemical processes in the hard rock aquifer system: geostatistical analysis and geochemical modeling techniques. Environmental Earth Sciences, 75, 1157. https://doi.org/10.1007/s12665-016-5979-5

Roques, C., Aquilina, L., Bour, O., Maréchal, J. C., Dewandel, B., Pauwels, H., Labasque, T., Vergnaud-Ayraud, V., Hochreutener, R. (2014). Groundwater sources and geochemical processes in a crystalline fault aquifer. Journal of Hydrology, 519(Parte D), 3110-3128. https://doi.org/10.1016/j.jhydrol.2014.10.052

Sardou-Filho, R., Matos, G. M. M., Mendes, V. A., Iza, E. R. H. F. (2013). Atlas de rochas ornamentais do estado do Espírito Santo. CPRM. 352 p. Disponível em: https://rigeo.cprm.gov.br/handle/doc/17787. Acesso em: 14 set. 2021.

Secretaria de Estado do Planejamento (SEPLAN). (1999). Zonas naturais do Espírito Santo: uma regionalização do Estado, das microrregiões e dos municípios. Vitória: SEPLAN.

Silva, J. N. (1993). Programa levantamentos geológicos básicos do Brasil: Cachoeiro de Itapemirim. Folha SF.24-V-A-V. Estado do Espírito Santo. Escala 1:100.000. Brasília: DNPM/CPRM. 176 p. 2 mapas. Disponível em: https://rigeo.cprm.gov.br/handle/doc/13671. Acesso em: 14 set. 2021.

Singaraja, C., Chidambaram, S., Prasanna, M. V., Thivya, C., Thilagavathi, R. (2014). Statistical analysis of the hydrogeochemical evolution of groundwater in hard rock coastal aquifers of Thoothukudi district in Tamil Nadu, India. Environmental Earth Sciences, 71, 451-464. https://doi.org/10.1007/s12665-013-2453-5

Singhal, B. B. S., Gupta, R. P. (2010). Applied hydrogeology of fractured rocks. 2. ed. Holanda: Springer, 408 p. https://doi.org/10.1007/978-90-481-8799-7

Srinivasamoorthy, K., Chidambaram, S., Prasanna, M. V., Vasanthavihar, M., Peter, J., Anandhan, P. (2008). Identification of major sources controlling groundwater chemistry from a hard rock terrain – a case study from Mettur taluk, Salem district, Tamil Nadu, India. Journal of Earth System Science, 117(1), 49-58. https://doi.org/10.1007/s12040-008-0012-3

Stoecker, F., Babel, M. S., Gupta, A. D., Rivas, A. A., Evers, M., Kazama, F., Nakamura, T. (2013). Hydrogeochemical and isotopic characterization of groundwater salinization in the Bangkok aquifer system, Thailand. Environmental Earth Science, 68, 749-763. https://doi.org/10.1007/s12665-012-1776-y

Subramani, T., Rajmohan, N., Elango, L. (2010). Groundwater geochemistry and identification of hydrogeochemical processes in a hard rock region, Southern India. Environmental Monitoring and Assessment, 162, 123-137. https://doi.org/10.1007/s10661-009-0781-4

Thivya, C., Chidambaram, S., Thilagavathi, R., Prasanna, M. V., Singaraja, C., Adithya, V. S., Nepolian, M. (2015). A multivariate statistical approach to identify the spatiotemporal variation of geochemical process in a hard rock aquifer. Environmental Monitoring and Assessment, 187, 552. https://doi.org/10.1007/s10661-015-4738-5

United States National Aeronautics and Space Administration (NASA), Ministry of Economy, Trade and Industry of Japan (METI). (2011). ASTER GDEM v2 Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model Version 2. Disponível em: https://earthexplorer.usgs.gov. Acesso em: 20 abr. 2018.

Vieira, V. S., Rapozo, F.O., Souza, E. C., Marques, M. (1997). Projeto Mapeamento Geológico: Programa Levantamentos Geológicos Básicos. Folha Cachoeiro do Itapemirim (SF 24-V-A). Escala 1:250.000. CPRM – Serviço Geológico do Brasil. Disponível em: https://rigeo.cprm.gov.br/handle/doc/8745. Acesso em: 14 set. 2021.

Vieira, V. S., Silva, M. A., Corrêa, T. R., Lopes, M. H. B. (2014). Mapa Geológico do Espírito Santo em Escala 1:400.000. Companhia de Pesquisa de Recursos Minerais (CPRM). Disponível em: http://geosgb.cprm.gov.br/geosgb/downloads.html. Acesso em: 20 abr. 2018.

Published

2021-12-13

Issue

Section

Articles

How to Cite

Neves, M. A. ., Oliveira, M. S. M. de ., Calegari, S. S. ., Bertolo, R. A., Hirata, R. C. A. ., & Caxito, F. de A. . (2021). Hydrogeochemistry of the Crystalline Aquifer System in the South of the state of Espírito Santo – Brazil. Geologia USP. Série Científica, 21(4), 31-47. https://doi.org/10.11606/issn.2316-9095.v21-168752

Funding data