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The single-leaf Frobenius Theorem with
Applications

Paolo Piccione and Daniel V. Tausk

Dedicated to Prof. Serge Lang

Abstract. Using the notion of Levi form of a smooth distribution, we
discuss the local and the global problem of existence of one horizontal
section of a smooth vector bundle endowed with a horizontal distribu-
tion. The analysis will lead to the formulation of a “one-leaf” analogue
of the classical Frobenius integrability theorem in elementary differ-
ential geometry. Several applications of the result will be discussed.
First, we will give a characterization of symmetric connections arising
as Levi-Civita connections of semi-Riemannian metric tensors. Sec-
ond, we will prove a general version of the classical Cartan-Ambrose-
Hicks Theorem giving conditions on the existence of an affine map with
prescribed differential at one point between manifolds endowed with

connections.
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1. Introduction

The central theme of the paper is the study of conditions for the exis-
tence of one integral leaf of (non integrable) smooth distributions satisfying
a given initial condition. The integrability condition given by Frobenius
theorem, a very classical result in elementary Differential Geometry, guar-
antees the existence of integral leaves with any initial condition. If on
one hand such condition is very strong, on the other hand the involutivity
assumption in Frobenius theorem is very restrictive. For instance, the in-
tegrability of the horizontal distribution of a connection in a vector bundle
is equivalent to the flatness of the connection.

A measure of non integrability for a smooth distribution D on a manifold
E is provided by the so-called Lewvi form £P of D; this is a skew-symmetric
bilinear tensor defined on the distribution, taking values in the quotient
TE/D. For z € E and v,w € D,, the value £2(v,w) is given by the
projection on T, E/D, of the Lie bracket [X,Y],, where X and Y are
arbitrary extensions of v and w respectively to D-horizontal vector fields.
If ¥ C E is an integral submanifold of D, then the Levi form of D vanishes
on the points of £. The first central observation that is made in this paper
is that, conversely, given an immersed submanifold X of E with T;,, X = D,
for some zg € E, if ¥ is ruled (in an appropriate sense) by curves tangent
to D, and if £P vanishes along ¥, then ¥ is an integral submanifold of D.
In particular, assume that D C TFE is a horizontal distribution of a vector
bundle = : E — M over a manifold M, and that ¥ is a local section of
7 which is obtained by parallel lifting of a family of curves on M issuing
from some fixed point z¢. If the Levi form of D vanishes along ¥, then X
is a parallel section of m (Theorem 2.5); we call this result the (local) single
leaf Frobenius theorem. In the real analytic case, a higher order version
of this result is given in Theorem 2.7; roughly speaking, the higher order
derivatives of the Levi form £P are obtained from iterated Lie brackets of
D-horizontal vector fields. The higher order single-leaf Frobenius theorem
states that, in the real-analytic case, if at some point zg of the manifold
E all the iterated brackets of vector fields in D belong to D,,, then there
exists an integral submanifold of D through zq (see [7]).
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A global version of the single-leaf Frobenius theorem is discussed in The-
orem 3.11; here, the base manifold M has to be assumed simply-connected.
Assume that a spray is given on M, for instance, the geodesic spray of some
Riemannian metric. The existence of a global parallel section of = through
a point eg with m(eg) = zo € M is guaranteed by the following condition:
every piecewise solution v : [a,b] — M of § with y(a) = z¢ should admit
a parallel lifting % : [a,b] — E such that 7¥(a) = ep and such that the Levi
form of D vanishes at the point 5(b).

We also observe (Proposition 3.12) that in the real analytic case, ev-
ery local parallel section defined on a non empty open subset of a simply
connected manifold M extends to a global parallel section.

Reference [4] is an excellent reading for those who are interested in more
general versions of the single-leaf Frobenius theorem, which is discussed in
the case that:

e the distribution D is not assumed to have constant rank;
e the manifold M is allowed to be infinite dimensional (Banach man-
ifold).

A huge number of problems in Analysis and in Geometry can be cast into
the language of distributions and integral submanifolds. As an application
of the theory discussed in this paper, we will consider two problems. First,
we will characterize those symmetric connections that are Levi-Civita con-
nections of some semi-Riemannian metric (alternatively, this problem can
be studied using holonomy theory, see [2]). Second, we will prove a very
general version of another classical result in Differential Geometry, which
is the Cartan- Ambrose-Hicks theorem (see [1, 5, 8]). We will prove a nec-
essary and sufficient condition for the existence of an affine map between
manifolds endowed with arbitrary connections.

Let us describe briefly these two results.

Consider the case of a distribution given by the horizontal space of a
connection V of a vector bundle 7 : E — M. Foré € E,set m=mw(£) € M
and E,, = ﬂ’l(m.); one can identify D¢ with T,, M, and the quotient
T¢E /D, with the vertical subspace T¢(Ep) = E;,. Then, the Levi form
SE'D : TnM x T,,M — E,, is given by the curvature tensor of V, up to a
sign (Lemma 4.1). In this case, the single leaf Frobenius theorem tells us
that a local parallel section of m through some point ey € E exists provided
that along each parallel lifting of a family of curves issuing from w(ep) € M
the curvature tensor vanishes (Corollary 4.2). In the real analytic case, the
existence of a local parallel section through a point £ € E is equivalent to
the vanishing of all the covariant derivatives V¥R, k > 0, of the curvature
tensor R at the point m = w(&) (Proposition 4.5).



340 P. Piccione and D. Tausk

Assume that the vector bundle 7 : E — M is endowed with a connection
V, and denote by VP! the induced connection on E*® E*. If g is a (local)
section of E*® E*, then vanishing of the curvature tensor R of V*! means
that the bilinear map g(R(v, w)-, -) is anti-symmetric for all v, w (formula
(13)). From this observation, we get the following result on the existence
of parallel metric tensor relatively to a given connection V on a manifold
M: given a nondegenerate (symmetric) bilinear form go on T;,, M, assume
that the tensor g obtained from gy by V-parallel transport along a family
of curves issuing from my is such that R is g-anti-symmetric. Then, g is V-
parallel (Proposition 4.6). Similarly, in the real analytic case, if V¥R at mg
is go-anti-symmetric for all £ > 0, then gy extends to a semi-Riemannian
metric tensor whose Levi-Civita connection is V. These results have been
used in [6] to obtain characterizations of left-invariant semi-Riemannian
Levi Civita connections in Lie groups.

As another application of our theory, in Section 5 we will study the prob-
lem of existence of an affine (i.e., connection preserving) map f between .
two affine manifolds (M, V™) and (N, V"), whose value y5 € N at some
point zg € M is given and whose differential d f(zo) : T, M — T, N is pre-
scribed. We prove a general version of the classical Cartan—Ambrose-Hicks
theorem (Theorem 5.1 for the local result, Theorem 5.3 for the global ver-
sion), giving a necessary and sufficient condition for the existence of such a
map; here, the connections VM and VV are not assumed to be symmetric,
and no assumption is made on the dimension of the manifolds M and N, as
well as on the linear map df(zo). The key observation here (Lemma 5.6)
is that, considering the vector bundle E = Lin(T'M,TN) over the product
M x N, endowed with a natural connection induced by VM and VV (see
formula (15)), then a smooth map f : U € M — N is an affine map if
and only if the differential df is a local parallel section of E along the
map U 3 ¢ — (z,f(z)) € M x N. When M and N are endowed with
semi-Riemannian metrics and VM and V¥ are the respective Levi-Civita
connections, then our result gives a necessary and sufficient condition for
the existence of a totally geodesic immersion of M in N.

The proof of the Cartan—Ambrose-Hicks theorem is obtained as an
application of the single-leaf Frobenius theorem, once the Levi form of
the horizontal distribution of the induced connection on E is computed
(Lemma 5.14). The higher order version of this result (Theorem 5.16)
is particularly interesting: in the real analytic case, a (local) affine map
f:UC M — N with f(zg) = yo and df(z¢) = o exists if and only if
o relates covariant derivatives of all order of curvature and torsion of VM
and V¥ at the points zg and yo respectively.
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As a nice corollary of the higher order Cartan-Ambrose-Hicks theorem,
we get the following curious result (Corollary 5.19): if M is a real-analytic
manifold endowed with a real-analytic connection V, and let zo € M be
fixed; there exists an affine symmetry around =y if and only if V@7, =0
and VZr+DR, =0 for all r > 0.

A certain effort has been made in order to make the presentation of

the material self-contained. For this reason, we have found convenient to
discuss, together with the original material, some auxiliary topics needed
for a more complete presentation of our results. For instance, in Subsec-
tion 3.1, we discuss and give the basic properties of the exponential map
of a spray (this is needed in our statement of the global one-leaf Frobenius
theorem). Similarly, in Appendix B we develop the basic theory needed for
making computations with covariant derivatives, curvatures and torsions
of connections on vector bundles obtained by functorial constructions; this
kind of computations is heavily used throughout the paper. Finally, in
Appendix A we discuss a globalization principle in a very general setting
of pre-sheafs on topological spaces. Such principle is used in the proof of
the global versions of the single-leaf Frobenius theorem (see for instance
the proofs of Theorem 3.11 and Proposition 3.12). Typically, the globaliza-
tion principle is employed in the following manner: given a vector bundle
m: E — M, a pre-sheaf P is defined on M by defining, for all open subset
U C M, PB(U) to be the set of all sections s : U — E of 7 satisfying some
property (for instance, parallel sections). For V C U, and s € P(U), the
map Puv : PU) — P(V) is given by setting Pyy(s) = sly. In this
context, the existence of a global section of = with the required property is
equivalent to the fact that the set P8(M) should be non empty. The central
result of Appendix A (Proposition A.8) gives a sufficient condition for this,
in terms of three properties of pre-sheaves, called localization, uniqueness
and eztension.
Dedicatory. The proof of the single-leaf Frobenius theorem discussed here
has taken inspiration from the proof of the classical Frobenius theorem
presented in Serge Lang’s world famous book [3]. Since the very beginning
of their mathematical careers, both authors have benefited very much from
this and from other beautiful books published by Prof. Lang. We want to
thank him by dedicating this paper to his memory.

2. The Levi form and the “single leaf Frobenius
Theorem”

Recall that a smooth distribution D on a smooth manifold E is a smooth
vector subbundle of the tangent bundle TE. For x € E we set D, =
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T,END, ie., D, is the fiber of the vector bundle D over x. A vector field
X on E is called horizontal with respect to a distribution D (or simply
D-horizontal) if X takes values in D, i.e., if X(x) € D; forall z € E. An
immersed submanifold S of E is called an integral submanifold for D if
T,S = D,, for all z € S. The distribution D is called integrable if through
every point of E passes an integral submanifold for D.

2.1. The Levi form of a smooth distribution.

Definition 2.1. Let E be a smooth manifold and let D be a distribution
on E. The Levi form of D at a point = € E is the bilinear map:
£P.D, xD, — T,E/D,

defined by £P(v,w) = [X,Y](z) + Dy € T,E/D,, where X and Y are
D-horizontal smooth vector fields defined in an open neighborhood of z in
E with X(z) = v and Y (z) = w. By [X,Y] we denote the Lie bracket of
the vector fields X and Y.

Below we show that the Levi form is well-defined, i.e., [X,Y](z) + D,
does not depend on the choice of the D-horizontal vector fields X and Y
with X(z) = v, Y(z) = w. Let 6 be a smooth RF-valued 1-form on an
open neighborhood U of z such that Ker(6,) = D, for all z € U. If X and
Y are vector fields on an open neighborhood of 2 then Cartan’s formula
for exterior differentiation gives:

do(X,Y) = X(6(Y)) - Y(8(X)) — 6([X,Y]).
If X and Y are D-horizontal then the equality above reduces to:
df(X,Y) = -0([X,Y]).

The formula above implies that if X', Y’ are D-horizontal vector fields such
that X’(z) = X(z) and Y'(z) = Y(z) then 0([X,Y]— [X",Y’])(z) = 0, i.e.,
[X,Y(z) — [X',Y'|(z) € D,. Hence the Levi form is well-defined. Setting
X(z) =v and Y (z) = w we obtain the following formula:

(1) 0, (L2 (v,w)) = —dO(v,w), v,w € Dy,

where 8, : T,E/D, — R* denotes the linear map induced by 6, in the
quotient space.

Remark 2.2. Clearly, by the classical Frobenius Theorem, D is integrable
if and only if its Levi form is identically zero. Moreover, the Levi form of
D vanishes along any integral submanifold of D.

2.1. Example. Let U be an open subset of R* = R¥ x R** and let
F:U 3 (z,y) — F(zy) € Lin(RF,R*%)



The single-leaf Frobenius Theorem 343

be a smooth map. We consider the distribution D = Gr(F) on U, i.e.,
D(ay) = Gr(Figy), for all (z,y) € U. Given X € R*, we define a D-
horizontal vector field X on U by setting )ﬂf(x'y) =Ly Flay(X )), for all
(z,y) € U. Given X,Y € R* then:

[X,Y] = (0,8,F(X,Y) + 8,F(F(X),Y) — 8, F(Y, X) + 8,F(F(Y),X)).

If we identify Dy, ,) with R* by the isomorphism (X,F(X )) — X and
R" /Dy with R"™* 2 {0}* x R"~* by the isomorphism (v,w) + D, ) —
w — F(v) then the Levi form £7 : R* x R — R™* is given by:

(2) £2(X,Y) = [X,Y].

Lemma 2.3. Let E be a smooth manifold, D be a smooth distribution on
E and let

U>(t,s)— H(t,s) € E
be a smooth map defined on an open subset U C R2. Let I C R be an
interval and let so € R be such that I x {sg} C U and Eg(t’sa) =0 for all
t € I. Assume that 9L (t,s) € D for all (t,s) € U. If ¥(to,s0) € D for
some tg € I then %%(t, s0) €D foralltel.

Proof. The set:
I'={tel:%ts) e D}

is obviously closed in I because the map I 3 ¢ — %%(t,so) € TE is
continuous and D is a closed subset of TE. Since I is connected and
to € I, the proof will be complete once we show that I’ is open in I. Let
t; € I be fixed. Let 6 be an R¥-valued smooth 1-form defined in an open
neighborhood V' of H(t;,s0) in E such that the linear map 6, : T, F — R*
is surjective and Ker(f,) = D, for all z € V. Choose a distribution D’
on V such that T,E = D, ® D, for all z € V. Then, for each z € V,
f, restricts to an isomorphism from D, onto R*. Let J be a connected
neighborhood of ¢; in I such that H(t,sg) € V for all t € J. We will show
below that the map:

3) J 3 t— 05,50 (5 (t 50)) € RF
is a solution of a homogeneous linear ODE; since eH(fllau)(%%(t],So)) =0,

it will follow that BH(t,sn)(%(t,sg)) =0forallte J, ie,JCI.

We denote by % and gg the canonical basis of R? and we apply Cartan’s
formula for exterior differentiation to the 1-form H*# obtaining:

AH0)(%. %) = &(EOE)) - &(@0(F) - @(F Z)-
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Since d(H*f) = H*(d#) and [£, £] = 0 we get:
(4)  dBpt,u0) (Bt 50), B2 (t,50)) = (GH(: o) (B2 (2, So)))

~ 8o (9H(t,s)("5v(t»8)))= teJ

Observe that, since 22 (t, s) is in D, the last term on the righthand side of
(4) vanishes. We can write 2 (t so) = ui(t) + uz(t) with uy(t) € D and
us(t) € D'. Since the Levi form of D vanishes at points of the form H (¢, so),
equation (1) implies that dfg ;) (v,w) = 0 for all v, w € Dy 5,). We may
thus replace %2 (t,so) by ua(t) in the lefthand side of (4). For t € J we
consider the linear map L(t) : R¥ — RF defined by:

L(t) - 2 = dBpr(s,00) (8L (. 50), Om(t,00) (2)), 2 € RE,
where, for z € V, 0, : RF — D!, denotes the inverse of the isomorphism
8zlp, : D, — R*.
Observe that:
dB71(¢,50) (B (£, 50), G (t,50)) = ABp1(s,0) (B2 (25 50), ua(t))
= L(t) - 9H(¢,30)(u2(f))
= L(t) - O (t,50) (L (¢, 50))-

Equation (4) can now be rewritten as:

% (011,000 (2 (8, 50)) ) = L(t) - Otre0) (3L (8, 30)), €.

Hence the map (3) is a solution of a homogeneous linear ODE and we are
done. O

2.2. Horizontal distributions and horizontal liftings. If £, M are
smooth manifolds and 7w : E — M is a smooth submersion then a smooth
distribution D on F is called horizontal with respect to = if

T.E = Ker(dn;) ® D,

for all x € E. Given a smooth horizontal distribution D on E then a
piecewise smooth curve ¥ : I — E is called horizontal if 4'(t) € D for all
t for which ¥/(¢) exists. Given a piecewise smooth curve v : I — M then
a horizontal lifting of v is a horizontal piecewise smooth curve 5 : I — F
such that mo 4 = 7.

By standard results of existence and uniqueness of solutions of ODE’s
it follows that given ¢ € I and xg € m~*(7(to)) then there exists a unique
maximal horizontal lifting 4 of v with (ty) = z¢ defined in a subinterval
of I around #;.
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Let A be a smooth manifold. By a A-parametric family of curves v on
M we mean a smooth map ¢ : Z C R x A — M defined on an open subset
Z of R x A such that the set:

L={teR:(tA\)€eZ}CR
is an interval containing the origin, for all A € A. By a local right inverse

of ¥ we mean a locally defined smooth map o : V € M — Z such that
Y(a(m)) =m, forallme V.

2.2. Example. Let M be a smooth manifold endowed with a connection
V. Given a point g € M we set A = T, M and we define a A-parametric
family of curves 1 on M by setting 1)(#,\) = exp, (t\); the domain Z C
R x A of 9 is the set of pairs (£, A) such that ¢A is in the domain of exp,, . A
local right inverse of 9 is defined as follows: let Vj be an open neighborhood
of the origin in T;,M that is mapped diffeomorphically by exp,, onto an
open neighborhood V of 2y in M. We set:

a(m) = (1= (exp::u IVu)_l(m))$
for all m € V. We remark that the same construction holds if one replaces
the geodesic spray of a connection with an arbitrary spray (see Section 3).

A local section of a smooth submersion w : E — M is a locally defined
smooth map s : U C M — E such that 7o s = Idy;. A local section s is
called horizontal if the range of ds(m) is Dy, for all m € U.

Lemma 2.4. Let s1 : U — E, 89 : U — FE be local smooth horizontal
sections of E defined in an open connected subset U of M. If s;(x) = sa2(z)
for some x € U then sy = s2.

Proof. Given y € U, there exists a piecewise smooth curve v : [a,b] — U
with ¥(a) = = and ~(b) = y. Then sj oy and sy oy are both horizontal
liftings of 7 starting at the same point of E; hence sy oy = s9 0 and
s1(y) = s2(y). O

2.3. Example. Consider the distribution D = Gr(F) on U C R" defined
in Example 2.1. Then the first projection 7; : U — R* is a submersion and
D is horizontal with respect to m;. A horizontal section s : R¥ D V — R"
of 7y is a map s(z) = (:c,f(x)) where f : V — R™* is a solution of the
total differential equation:

(5) df(z) = F(z, f(z), z€V.
2.3. The single leaf Frobenius theorem.

Theorem 2.5 (local single leaf Frobenius). Let E, M be smooth manifolds,
w: E — M be a smooth submersion, D be a smooth horizontal distribution
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on E and v : Z C R x A — M be a A-parametric family of curves on
M with a local right inverse « : V.C M — Z. Let ¢ : Z — FE be a
A-parametric family of curves on E such that t + (t,\) is a horizontal
lifting of t — ¥ (t, ), for all X\ € A. Assume that:

(a) the Levi form of D vanishes on the range of V;
(b) AD(0, ) : THA — TJ;{D.,\)E takes values in D for all A € A.

Then s =Y oa:V — E is a local horizontal section of .

Proof. If |—£,e[ 2 s +— A(s) is an arbitrary smooth curve on A then the
map .
H(t,s) = $(t, A(s))
satisfies the hypotheses of Lemma 2.3 with {5 = 0 and sp = 0. Thus:
OH , .= O

s 00 =)

is in D for all t € Iy(). It follows that d?ﬁ(:,x) takes values in D, for all
(t,A\) € Z. Hence ds(m) = d¢)(s(m)) o da(m) also takes values in D, for
almeV. O

Remark 2.6. We observe that if the map A — 15(0, A) is constant then
hypothesis (b) of Theorem 2.5 is automatically satisfied. Theorem 2.5 is
typically used as follows: one considers the A-parametric family of curves
1 explained in Example 2.2, a fixed point eg € 7~ !(x9) C E and for each
A € A one defines t — %(t,A) to be the horizontal lifting of ¢ — (¢, \)
with (0, \) = eg.

2.4. Example. The single leaf Frobenius theorem can be used to prove
the existence of solutions of the total differential equation (5) satisfying
a initial condition f(zg) = yo as follows. Let V be a star-shaped open
neighborhood of zg in R*. Set A = R¥; we define a A-parametric family
of curves 1 : Z C R x A — M on M = RF by setting ¥:(t,\) = z¢ + A,
where Z is the set of pairs (t,\) with zg + tA € V. A horizontal lifting
t Pt \) = (¥(t,N), ¥(t, A)) of the curve t — (¢, A) is a solution of the
ODE:
d

(6) a‘l’(t, ’\) = FJ)(;,,\)(/\)-

We choose the solution ¢ — (¢, \) of the ODE (6) with initial condition
¥(0,A) = yo. We can assume that V is small enough so that ¥ is well-
defined on Z. Hypothesis (b) of Theorem 2.5 is then automatically satisfied
and hypothesis (a) is equivalent to the condition that (2) vanishes on the
points of the form %(t,\), (t,A) € Z. Under these circumstances, the

(£, A(0)X'(0)
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thesis of Theorem 2.5 guarantees that f : V 3 2+ ¥(1,z — zp) € R** is
a solution of the total differential equation (5) with f(xo) = yo.

2.4. The higher order single leaf Frobenius theorem. Let D be a
smooth distribution on a smooth manifold E. We denote by I'(TE) the set
of all smooth vector fields on E, by I'(D) the subspace of I'(TE) consisting
of D-horizontal vector fields and by I'*°(D) the Lie subalgebra of I'(TE)
spanned by I'(D). The Lie algebra I'°(D) can be alternatively described
as follows; we define recursively a sequence

D) c T{D) c T D) C---

of subspaces of I'(TE) by setting I'°(D) = I'(D) and I"*(D) to be the
subspace of I'(T'E) spanned by I'""(D) and by the brackets [X,Y], with
X eI'"(D) and Y € I'(D). Then:

o0
() = |J (D).
r=0
Given X € I'(TE) we denote by adx : I'(TE) — I'(TE) the operator
adx (Y) = [X,Y].

Theorem 2.7. Let E be a real-analytic manifold endowed with a real-
analytic distribution D. Given eg € E then there ezists an integral subman-
ifold of D passing through eg if and only if X (eg) € De,, for all X € T'*°(D).

Proof. If there exists an integral submanifold S of D passing through eg
then it follows immediately by induction on r that X(S) C D, for all
X € I'"(D) and all r > 0. Thus, X(eg) € D, for all X € I'*°(D).
Conversely, assume that X(ep) € De,, for all X € I'°(D). By considering
a convenient real-analytic local chart around ey we may assume without
loss of generality that E = U is an open subset of R* = RF x R"* and
that D is of the form Gr(F) (see Example 2.1). Write ep = (x0,y0); we
will use the ideas explained in Example 2.4 to find a solution f of the
total differential equation (5) with f(zp) = yo. Then Gr(f) is the required
integral submanifold of D passing through eg. Observe that given A € R¥
then t + (¢, \) is an integral curve of the constant vector field A in R¥
and thus the horizontal lift ¢ — (¢, ) is an integral curve of the vector
field A = (A, F()\)) on R™ passing through eg at ¢ = 0. We now let A € R¥,
X,Y € R*, be fixed and we define a map t — ¢(t) € R** by setting:
$(t) = L3, (X, Y) = [X, Y]y(,p)-

The proof will be completed once we show that ¢ is identically zero; since ¢
is real-analytic, it suffices to proof that all derivatives of ¢ at ¢ = 0 vanish.
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Let us show by induction on r that for all » > 0 the r-th derivative of ¢ is
given by:

(7)  ¢(t) = (ad5)"[X, ¥] + LD ((ad;)'[X, Y]; i=0,1,...,7 - 1),

where the righthand side is computed at the point ¥(t,A) and L) is a
smooth map that associates to each (z,y) € U C R" a linear map:

L(?‘) ; @Rn—k — LRk

(z.v)

From equality (7) the conclusion will follow; namely, for all 7, (ad;)"‘[}‘i-' ,Y]is
in {0}* x R™¥ and since ((ad;)![X,Y]),, € Deo, we get ((ady)'[X,Y]),, =
0. Hence ¢ (0) = 0, for all » > 0. To prove (7) simply differentiate both
sides with respect to ¢, observing that:

%(adx)*‘p?, Y] =d((ad;)'[X, Y]) - A = (ad;) "+ [X, Y]+ dA((ad5) [X, Y]).
O

Remark 2.8. Clearly, the hypotheses of Theorem 2.7 are local, i.e., if U is
an open neighborhood of ey in E then X(ep) € D,, for all X € I'*(D|y)
if and only if X(eg) € D, for all X € I'°(D). Replacing E with an open
neighborhood of ey, we may assume that D admits a global referential X7,
...y Xg. It is easy to see that I'"(D) is the C°°(E)-module spanned by X,
..., X and by the iterated brackets:

(8) [Xilj[Xizy"'![Xi_ngI'_g.‘.]_]"']]} ils"-)is:]-!"'skt3:11"‘|T'

Thus, in order to check the hypotheses of Theorem 2.7, it suffices to verify
if the brackets in (8) evaluated at ey are in D,,, for all s > 1.

3. The global “single leaf Frobenius Theorem”

3.1. Sprays on manifolds. Let M be a smooth manifold and let = :
TM — M the canonical projection of its tangent bundle. Denote by
dm : TTM — TM the differential of m; we denote by # : TTM — TM
the natural projection of TTM = T(TM). For each a € R we denote by
m, : TM — TM the operator of multiplication by a.

Definition 3.1. A spray on M is a smooth vector field § : TM — TTM
on the manifold T'M satisfying the following two conditions:
(i) dreS=70S;
(ii) for all @ € R, admg 0 S = S om,, i.e., admy(v)S(v) = S(av), for
all v e TM.
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Remark 3.2. Notice that property (b) on Definition 3.1 implies that a spray
vanishes on the zero section of TM. In particular, the integral curves of S
passing through the zero section are constant.

Lemma 3.3. Let S : TM — TTM be a smooth vector field on TM. Then
S 15 a spray on M if and only if the following conditions are satisfied:

(a) for every integral curve A : I — TM of S, we have A = +/, where
y=mok;
(b) if \=+":1 — TM is an integral curve of S then

I>t— %’}’(af) eTM

is an integral curve of S, for all a € R.

Definition 3.4. A curve v:I — M is called a (maximal) solution of S if
v : I — TM is a (maximal) integral curve of the vector field S.

Obviously for every x € M, v € T, M there exists a unique maximal
solution 7 of § with 4(0) = z and ~/(0) = v.

3.1. Example (geodesic spray). If V is a connection on M then one can
define a spray S on M by taking S(v) to be the unique horizontal vector
on T, TM such that dm, (S (v)) = v, for all v € TM. The integral curves
of § are the curves 4/, with v : I — M a geodesic of V.

3.2. Example (one-parameter subgroup spray). Let G be a Lie group and
denote by g its Lie algebra. Using left (resp., right) translations, one can
identify the tangent bundle T'G' with the product G x g, so that

T(TG)=T(G x g) = (TG) x (Tg) = (G x g) x (g % 9)-

The vector field on T'G given by S(g,X) = (9,X,X,0), g € G, X € g,
is a spray in G, whose solutions are left (resp., right) translations of one-
parameter subgroups of G. The spray & is the geodesic spray of the con-
nection whose Christoffel symbols vanish on a left (resp., right) invariant
frame.

Let S be a fixed spray on M and denote by
F:Dom(F)CRxTM — TM
its maximal flow. The ezponential map associated to S is the map:
exp(v) = 7(F(1,v)) € M,
defined on the set:
Dom(exp) = {v € TM : (1,v) € Dom(F)}.
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Since Dom(F) is open in R x "M, Dom(exp) is open in T'M; moreover, by
Remark 3.2 the zero section of T'M is contained in Dom(exp). In partic-
ular, for each z € M, the intersection of Dom(exp) with 7 M is an open
neighborhood of the origin.

Lemma 3.5. Forallt,s €c R, ve TM, (t,sv) € R x TM is in Dom(F) if
and only if (ts,v) € RxTM is in Dom(F'); moreover, F(t,sv) = sF(ts,v).

Corollary 3.6. For alls € R, v € TM, (s,v) € R xTM is in Dom(F) if
and only if sv is in Dom(exp); moreover, m(F(s,v)) = exp(sv).

Corollary 3.7. Given z € M, v € TyM then the set {3 €ER: sve
Dom(exp)} is an open interval containing the origin; the map ~v(s) =
exp(sv) defined on such open interval is the mazimal solution of S with
70) =2, 7(0) =v.

For each z € M let us denote by exp, the restriction of exp to Dom(exp)N
T, M. It follows from Corollary 3.7 that the domain of exp, is a star-shaped
open neighborhood of the origin in T, M; moreover, d exp, (0) is the identity
map of T, M.

Definition 3.8. A normal neighborhood of a point z € M is an open
neighborhood V' C M of x such that there exists a star-shaped open neigh-
borhood U of the origin in T;; M such that exp, |y : U — V is a diffeomor-
phism. An open subset V of M is called normal® if every z € M has a
normal neighborhood containing V.

It follows from the inverse function theorem that every point of M has
a normal neighborhood. Moreover, we have the following:

Proposition 3.9. Fvery point of M is contained in some normal open
subset of M.

Proof. Consider the map ¢ : Dom(exp) C TM — M x M given by ¢(v) =
(exp(v),m(v)). Given z € M and denote by 0, € TM the origin of T, M.
We identify Ty, T'M with T, M@T, M, where the first summand corresponds
to the tangent space of the zero section of TM and the second summand
corresponds to the tangent space to the fiber of TM containing 0,. The
differential of ¢ at 0, is easily computed as:

dgo, (v,w) = (v+w,v), v,we T, M.
It follows from the inverse function theorem that ¢ carries an open neigh-
borhood U of 0, in TM diffeomorphically onto an open neighborhood of

1Observe that, according to this definition, a normal open subset of M containing a
point z € M is not necessarily a normal neighborhood of z!
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(z,z) in M x M. We can choose U such that & N T, M is a star-shaped
open neighborhood of the origin of T, M, for all y € (). Let V be an
open neighborhood of z in M such that V x V C ¢(U). We claim that V
is a normal open subset of M. Let y € V be fixed. Clearly V C 7(U), so
that U N T, M is a star-shaped open neighborhood of the origin of Ty M;
thus exp(U NT, M) is a normal neighborhood of y. Moreover, given z € V
then (z,y) € V x V, so that there exists v € U with ¢(v) = (z,y); then
v € U NTyM and hence z € exp(U N T,M). O

Definition 3.10. A piecewise solution of aspray Sisacurve v : [a,b] — M
for which there exists a partition a =ty < t; < --- < tx = b of [a, ] such
that 7|4, ¢,,) is a solution of S for all i.

3.2. The global single leaf Frobenius theorem.

Theorem 3.11 (global single leaf Frobenius). Let E, M be smooth man-
ifolds, m : E — M be a smooth submersion and D be a smooth horizontal
distribution on E. Let z9 € M, ey € m~(z0) C E be given and let S be a
fized spray on M. Assume that:
(a) every piecewise solution v : [a,b] = M of S with v(a) = ¢ admits
a horizontal lifting 7 : [a,b] — E with ¥(a) = eo;
(b) if ¥ : [a,b] — E is the horizontal lifting of a piecewise solution
v :|a,b] = M of § with 4(a) = eg then the Levi form of D vanishes
at the point Y(b) € E;
(¢c) M is (connected and) simply-connected.
Then there exists a unique global smooth horizontal section s of E with
s(zo) = ep.

Proof. Uniqueness follows directly from Lemma 2.4. For the existence, we
use the globalization theory explained in Appendix A.

Let E' denote the subset of F consisting of the points of the form (b),
where F(a) = eg and 7 : [a,b] — E is the horizontal lifting of some piece-
wise solution v : [a,b] — M of § with y(a) = 5. We define a pre-sheaf
P over M as follows: for each open subset U of M, ‘B(U) is the set of
all smooth horizontal sections s : U — E with s(U) € E’. Given open
subsets U,V C M with V C U then Byy is given by Py v (s) = s|v, for
all s € P(U). The existence of a global smooth horizontal section of E
is equivalent to P(M) # 0. We will use Proposition A.8. Using Theo-
rem 2.5 (recall Remark 2.6) we get a smooth horizontal section s : U — E
defined in an open neighborhood U of zg; it is clear by the construction
of s that s(U) C E’. Thus the pre-sheaf B is nontrivial. The localiza-
tion property (Definition A.4) for ‘B is trivial and the uniqueness property
(Definition A.6) for B follows directly from Lemma 2.4. To conclude the
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proof, we show that P has the extension property (Definition A.6). We
shall prove that every normal open subset of M has the extension property
for B (recall Proposition 3.9). Let U be an open normal subset of M, V be
a nonempty open connected subset of U and s € ‘B(V) be a smooth hori-
zontal section of E with s(V) C E’. Let z; € V be fixed. Since s(z;) € F',
there exists a piecewise solution v : [a,b] — M of § with y(a) = zp and a
horizontal lifting 4 : [a,b] — E of v with §(a) = ep and F(b) = s(z1). Let
W be a normal neighborhood of z; containing U and Wy be a star-shaped
open neighborhood of the origin in T;;; M such that exp, : Wy — W is a
diffeomorphism. For each x € W let v € Wy be such that exp,, (v) = z;
we claim that p; : [0,1] > t ~— exp,, (tv) € M has a horizontal lifting
2 :[0,1] — E starting at s(z1) and that the Levi form of D vanishes along
the image of ji. Namely, the concatenation « - u of v with p is a piecewise
solution of S starting at xg; by hypothesis (a), - p has a horizontal lifting
starting at ep. Such horizontal lifting is of the form 4 - i, where i is a
horizontal lifting of p starting at s(z;); moreover, hypothesis (b) implies
that the Levi form of D vanishes along 7 - ji. Observe that the image of
i is contained in E’. We can now apply Theorem 2.5 to obtain a smooth
horizontal section § : W — E with 5(z;) = s(z;). Thus, by Lemma 2.4
and the connectedness of V, 3|y = s and hence 3|y € B(U) is an extension
of s to U. O

Proposition 3.12. Let E, M be real-analytic manifolds, m : E — M be
a real-analytic submersion and D be a real-analytic horizontal distribution
on E. Assume that:

(a) M is (connected and) simply-connected;
(b) given a real analytic curve y: 1 — M, to € I and ey € v~ (y(to))
then there exists a horizontal lifting 7 : I — E of v with ¥(tg) = eg.
Then any local horizontal section s : U — E of m defined on a nonempty
connected open subset U of M extends to a global horizontal section of m.
In particular, if D satisfies the hypothesis of Theorem 2.7 at some point
eo of E, assumptions (a) and (b) imply that © admits a global horizontal
section.

Proof. We use again the globalization theory explained in Appendix A.
We define a pre-sheaf B over M as follows: for each open subset U of M,
P(U) is the set of all smooth horizontal sections s : U — FE; given open
subsets U,V € M with V C U then Py is given by Pyy(s) = s|v,
for all s € ‘B(U). By Proposition A.8 it suffices to show that ‘P has the
localization property, the uniqueness property and the extension property.
The localization property is trivial and the uniqueness property follows
from Lemma 2.4. As to the extension property, it can be proved as follows.
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Let zp € M be fixed and let ¢ : U — Bgy(r) be a real-analytic chart
defined on an open neighborhood U of zy, taking values in the open ball
Bo(r) € R" of radius r centered at the origin and ¢(z¢) = 0. We will
show that V = ¢~ 1(Bg(r/ 3)) is an open neighborhood of zp having the
extension property for . To this aim, let W be a nonempty connected
open subset of V' and let s € P(W) be a local horizontal section defined
on W. Choose z; € W. SetAng(gr) andlet p: ZC Rx A — M be
the one-parameter family of curves defined by 1(t,A) = ¢~ (p(z1) + tA),
where Z is the set of pairs (£,A) € R x A with ¢(z1) + tA € Bo(r). We
define a local right inverse

1 ¢ (Bygan)(3r)) — Z CRx A

of ¥ by setting a(z) = (l,cp(:.c) - cp(:cl)). By assumption (b), for each
A € A, the curve t ~ 3(t,A) has a horizontal lifting ¢ — (¢, A) € E with
¥(0,A) = s(x1). Notice that, by the uniqueness of the horizontal lifting of
a curve, we have ‘J}(t,)x) = s(3(t, A)) for small ¢. Since s is a horizontal
section of m, its image is an integral submanifold of D and thus the Levi
form £7 vanishes along the image of s. Thus £P vanishes at the point
¥(t, \) for small ¢; hence, since t SD(J)(t,/\)) is real-analytic, £P must
vanish along the entire curve ¢ — ¥(t,A). By Theorem 2.5, ) o o is a
horizontal section of E with (3 o a)(x;) = s(z,); since the domain of «
clearly contains V, Lemma 2.4 implies that 1) o o extends s to (an open set
containing) V. This proves the extension property of 3 and concludes the
proof. O

4. Levi—Civita connections

4.1. Levi form of the horizontal distribution of a connection. Let
7 : E — M be a smooth vector bundle over a smooth manifold M and let
V be a connection on E; for m € M we denote by E,, = n~!(m) the fiber
of E over m. We denote by R,, : T,,M x T,,M x E,, — E,, the curvature
tensor of V defined by:

R(X,Y){ =VxVy{— VyVx{ - Vix v,

for all smooth vector fields X, ¥ in M and every smooth section £ of E.
Recall that there exists a unique distribution D on the manifold E that
is horizontal with respect to m and has the following property: if v: I — M
is a smooth curve on M then a curve ¥ : I — F is a horizontal lifting of ~
with respect to D if and only if 4 is a V-parallel section of E along . We
call D the horizontal distribution of V. Given m € M and £ € E,, then
the quotient T E/D; can be identified with T¢(E,,) = Ker(dm¢); moreover,
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since E,, is a vector space, we identify T¢(E,,) with E,,. We also identify
D¢ with T, M using dme. The Levi form of D at a point { € E can thus
be seen as a bilinear map:

L2 : TnM X TnM — Ep,.
Lemma 4.1. The Levi form of the horizontal distribution D of a connec-
tion V is given by:

2?(‘[},’{{}) = _R'm(va W)é,

forallme M, £ € Ey,.
Proof. Given a smooth vector field X on M we denote by X the hori-
zontal lift of X which is the unique horizontal vector field on E such that
dme(XPor(€)) = X (w(€)), for all ¢ € E. Given smooth vector fields X,
Y on M, we have to show that vertical component of [X hor yhor] gt a
point £ € E is equal to —R(X,Y)£. Note that the horizontal component
of [Xhor yhor] ig [X,Y]"r, since X" and Y1°F are 7-related respectively
with X and Y. Thus, the proof will be concluded once we show that:

a([Xhor‘ Yhor} - [X, Y}hor) — —a(R(X, Y){)

for every smooth section a of the dual bundle E*. Given one such section
a, we denote by f, : E — R the smooth map defined by:

fa(€) = a(8).
We claim that:
KD = Fog i
where V* denotes the connection of E*. Namely, let y : |—¢,e[ — M be

an integral curve of X and let ¢t — £(t) be a parallel section of E along =,
so that £ is an integral curve of X"°"; then:

X" (fa) = §limofa(6®) = §licg2r (E1)
= (Vy@)ét)] o = (Vxa)§,
which proves the claim. Observe also that if v € T'E is a vertical vector
then v(fa) = a(v); therefore:
9)
a([Xhm,Yhor] L [X, Y]hor) - ([th",Yh"“'] . [X, Y]hor) (fa) s fR'(X.Y)m
where R* denotes the curvature tensor of V*. A simple computation shows
that:
R*(X,Y)a = —aoR(X,Y).
The conclusion follows from (9) by evaluating both sides at the point £&. [J
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Corollary 4.2. Let m : E — M be a smooth vector bundle endowed with a
connection V, let Y : Z C R x A — M be a A-parametric family of curves
on M with a !ocal right inverse « : V C M — Z and let ) : Z — E be a
smooth section of E along v such that t — u’)(t, A) is parallel for all A € A
and such that A — (0, )) is also parallel. If

Eﬁ(t,;\) (v, w)"‘;(tr A) =0,

for all v,w € Ty M and all (t,\) € Z then s = v o  is a parallel local
section of E.

Proof. Follows readily from Theorem 2.5 and Lemma 4.1. O

Corollary 4.3. Let m: E — M be a smooth vector bundle endowed with a
connection V. Let zg € M, eg € 771 (z9) C E be given and let S be a fized
spray on M. Assume that:

(a) if v : [a,b] — M is a piecewise solution of S with y(a) = zg and
¥ : [a,b] — E is a parallel section of E along v with 7(a) = eg then
Ry (v,w)5(b) = 0, for all v,w € T, ;) M;

(b) M is (connected and) simply-connected.

Then there ezists a unique global smooth parallel section s of E with s(xg) =
€o.
Proof. Follows directly from Lemma 4.1 and Theorem 3.11. O

Corollary 4.4. Let w: E — M be a real-analytic vector bundle endowed
with a real-analytic connection V. Assume that M is (connected and)
simply-connected. Then any local parallel section s : U — E of E defined
on a nonempty connected open subset U of M extends to a global parallel
section of E.

Proof. 1t follows from Lemma 4.1 and Proposition 3.12. O

Proposition 4.5. Let 7 : E — M be a real-analytic vector bundle endowed
with a real-analytic connection V. Givenz € M, e € 7~ (z), assume that:

(10) (V R (‘U],Uz, s ,'Uk+2)6 = 0

for all vi,... 040 € TuM and all kK > 0. Then there erists a parallel
section s ofE defined in an open neighborhood of = in M with s(x) = e;
in particular, by Corollary 4.4, if M is (connected and) simply-connected
then there exists a global parallel section s of E with s(z) = e.

Proof. Given a smooth vector field X on M, we denote by X the unique
horizontal vector field on F' that is w-related with X. We show that condi-
tion (10) is equivalent to the condition that all iterated brackets of vector
fields X are horizontal at the point e. The conclusion will then follow from
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Theorem 2.7. First, let us compute the bracket [)? ’ 17] Since X and Y are
w-related ge‘sﬂpectively with X and Y, it follows that the horizontal compo-
nent of [X,Y] is [X,Y]; its vertical component is computed in Lemma 4.1.
Thus:

(11) (X, ¥]e = (IX, Y], ~R(X,Y)e),

where we write tangent vectors to E as pairs consisting of a horizontal
component and a vertical component. Given a smooth section L of the
vector bundle Lin(E'), we denote by L the vertical vector field on E defined
by E(e) = (0, L(e)). Given a smooth vector field Z on M, let us compute
the bracket [Z,L]. Since Z is n-related with Z and L is w-related with
zero, it follows that [2 s E} is vertical. Given a smooth section a of E*, we
consider the map f, : E — R defined by f,(e) = a(e) and we compute as
follows:

L(fa)(e) = a(L(e)) = facL(e),
Z(fa)(e) = 3 Jale(®) = G a(e®) = (Vza)(e) = F9a(e),

where £ — e(t) is an integral curve of 2 , i.e., a parallel section of E along
an integral curve of Z. Then:
(Z,L)(fa) = Z(L(fa)) = L(Z(fa)) = o (aor) = f(vga)oL = faovyL
= VZL(fn)s
so that:
(12) (Z,1) = VL.
Notice that (11) says that [J? : 37] is given by:
X,?]=xY]-L,
where L(e) = R(X,Y )e. Using the equality above and (12) it can be easily
proved by induction that:
21,122,124, X, Y]] 1| = (20, (22, ... |2, [X,Y]) - ]) - L,
where:
Li(e) = (V2 (Vz, (- V7 (R(X,Y)) ---)))e.
The conclusion follows by observing that Li(e) can be written in the form:
k-1
Lk(e) = (VkR)(le ey Dy X, Y)e 3 E L,
=0
where Ly; is a term linear in (V'R)(---)e. O
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4.2. Connections arising from metric tensors. Let 7 : E — M be
a vector bundle and let E* ® E* denote the vector bundle over M whose
fiber at m € M is the space of bilinear forms on E,,. If V is a connection
on E then we can define a induced connection VP! on E* ® E* by setting:

(VRg)(&n) = X (9(&,m) — 9(Vx&n) — g€, Vxn),

where X is a smooth vector field on M and &, n are smooth sections of
E. A straightforward computation shows that the curvature tensor RP! of
VP is given by:

(13)  (R"(X,Y)g)(&,n) = —g(R(X,Y)E,n) — 9(&, R(X,Y)n),

for any smooth vector fields X, Y on M, any smooth sections &, 1 of E
and any smooth section g of E* @ E*. If v : I — M is a smooth curve
defined on an interval I around 0 and if go is a bilinear form on E. ) then

the parallel transport I 5 ¢t — g; of gp along v relatively to the connection
Vb is given by:

Qt(Eﬂ?) = gO(F)t_]& ‘P\,‘_ln)a 6: ne E’y(t)s
where P; : E. ) — E,;) denotes the parallel transport along ~.

Given a smooth manifold M then a semi-Riemannian metric on M
is a smooth section g of the vector bundle TM* ® TM* such that g, :
TM x T, M — R is symmetric and nondegenerate; if g, is positive
definite for all m € M, we call ¢ a Riemannian metric. The Levi-Civita
co;ainection of g is the unique symmetric connection V on T'M such that
Vg =0.

We consider the following problem: given a symmetric connection V on
a smooth manifold M, when does there exist a semi-Riemannian metric g
on M such that V is the Levi-Civita connection of g7

Note that if V is the Levi-Civita connection of a semi-Riemannian met-
ric g then for any m € M and any v,w € T,,M, the linear operator
Ry(v,w) : T,yM — T, M corresponding to the curvature tensor of V
is anti-symmetric with respect to g,,; moreover, given a smooth curve
v : [a,b] — M with y(a) = mg and y(b) = m then, denoting by P :
TrgM — T, M the parallel transport along -, the linear operator:

PRy (v,w)| P : TpgM — TrpeM

is anti-symmetric with respect to gm,, for all v,w € T;,, M. We will show
below that this anti-symmetry characterizes the connections arising from
semi-Riemannian metrics.

Proposition 4.6. Let M be a smooth manifold, V be a symmetric connec-
tion on TM, mg € M and gy be a nondegenerate symmetric bilinear form
onToM. Let p: Z CR x A — M be a A-parametric family of curves on
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M with a local right inverse a : V C M — Z; assume that ¥(0,\) = my,
for all A € M. For each (t,\) € Z, we denote by P 5y : TngM — Ty )M
the parallel transport along t — ¥(t,X). Assume that for all (t,)\) € Z the
linear operator:

(14) Py [Ryen) (0, w)] P,y : Tg M — T M
is anti-symmetric with respect to go, for all v,w € Ty »)M, where
Ryt (v, w) : Ty M — Ty M

denotes the linear operator corresponding to the curvature tensor of V.
Then V is the Levi-Civita connection of the semi-Riemannian metric g on
V C M defined by setting:

-1

Im (- ) = QO(PQ,_{L)'aPa(m)‘):
forallmeV.

Proof. For each (t,)\) € Z, let ¥(t,\) € TM* ® TM* be the bilinear form
on Ty 2 M defined by:

Then ¥ satisfies the hypotheses of Corollary 4.2 with E = TM* ® TM*;
namely, ¥(0,A) = go, for all A € A and by (13) and the anti-symmetry
o~f (14), we have Rz’(]t‘A)(v,w) = 0, for all v,w € Ty M. Hence g =
hoa: V — TM*@TM* is a parallel section of TM* @ TM* and V is the
Levi-Civita connection of g. O

Theorem 4.7. Let M be a smooth manifold, V be a symmetric connection

on TM, mg € M and gy be a nondegenerate symmetric bilinear form on
TmoM. Let S be a fized spray on M. Assume that:

o for every piecewise solution 7 : [a,b] — M of § with v(a) = mg the
linear operator f:’,;'iR,,,(g,)}:'.Y on Ty, M is go-anti-symmetric, where
Py : Ty M — T,y M denotes parallel transport along v;

e M is (connected and) simply-connected.

Then gy extends to a semi-Riemannian metric on M for which V is the
Levi-Civita connection.

Proof. It follows from (13) and Corollary 4.3. O

Proposition 4.8. Let M be a (connected and) simply-connected real-ana-
lytic manifold and let V be a real-analytic symmetric connection on TM.
If there ezists a semi-Riemannian metric g on a nonempty open connected
subset of M having V as its Levi-Clivita connection then g extends to a
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globally defined semi-Riemannian metric on M having V as its Levi-Civita
connection.

Proof. 1t follows from Corollary 4.4. O

Proposition 4.9. Let M be a real-analytic manifold and let V be a real-
analytic symmetric connection on TM. Given a point zo € M and a
nondegenerate symmetric bilinear form go on T,,M, if:

(V*R)(v1, ..., vks2) : TugM — TyyM

s go-anti-symmetric for all vy,...,vp49 € TyoM and all k > 0 then go
extends to a semi-Riemannian metric on an open neighborhood of xo whose
Levi-Civita connection is V. Moreover, if M is (connected and) simply-
connected then go extends to a global semi- Riemannian metric on M having
V as its Levi-Civita connection.

Proof. Follows easily from Proposition 4.5 and from formula (13). O

The above characterizations of Levi--Civita connections have been used
in [6], where the authors study left-invariant (symmetric) connections in
Lie groups.

5. Affine maps

Let us now discuss as an application of the “single leaf Frobenius Theo-
rem” a classical result in differential geometry.

5.1. The Cartan—Ambrose-Hicks Theorem. Consider the following
setup. Let M, N be smooth manifolds endowed respectively with connec-
tions VM and V. We denote by T, TV (resp., RM, RN) respectively
the torsion tensors (resp., curvature tensors) of VM and VV. A smooth
map f: M — N is called affine if for every z € M, v € T, M and every
smooth vector field X on M we have:

df=(Vy! X) = V' (df o X);

in the formula above dfo X : M — T'N is regarded as a vector field along f
on N, so that it makes sense to compute its covariant derivative VV along
veTM.

Let xo € M, yo € N be given and let og : T,y M — Ty, N be a linear
map. Given a geodesic v : [a,b] — M with y(a) = zo then the geodesic
¢ [a,b] — N with p(a) = yo and 1/ (a) = o(+/(a)) is called induced on N
by the geodesic v and by og. We observe that the geodesic u : [a,b] — N is
well-defined only if (b—a)o(y/(a)) is in the domain of the exponential map
of N at the point y. Let o : T. ;)M — T,;) N be the linear map given
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by the composition of parallel transport along v, ¢ and parallel transport
along p; we call o the linear map induced by -y and ayg.

Theorem 5.1. Let 9 € M, yo € N be given and let g : T, M — TN
be a linear map. Let U be an open subset of TpoM which is star-shaped
at the origin and which is carried diffeomorphically onto an open subset V
of M by the exponential map of M at xg. Assume that o(U) is contained
in the domain of the exponential map of N at yy. For each x € V, let
vz 1 [0,1] — M be the unique geodesic such that v4(0) € U and v,(1) = z;
let pig : [0,1] — N and o, : ToM — T, )N be respectively the geodesic
and the linear map induced by v, and og. Assume that for all x € V the
linear map o, relates TM with TV and RM with RV, i.e.:

Oz (TM('s )) =N (ga:(’)u Ux('))s Jx(RM('r ) : ) = RN(U:;(')- Uz())f":c()
Then the smooth map f : V — N defined by f(z) = pz(1) is affine and
df(z) = o, for all x € V; in particular, f(zo) = yo and df(zy) = 0p.

Remark 5.2. In the statement of Theorem 5.1, if one assumes that og is an
isomorphism (resp., injective) then it follows that f is a local diffeomor-
phism (resp., that f is an immersion). Moreover, if VM and V¥ are the
Levi-Civita connections of Riemannian metrics on M and N respectively
then, if one assumes that op is an isometry, it follows that f is a local
isometry.

In what follows we assume that V¥ is geodesically complete, i.e., for all
y € N the exponential map of N at y is defined on the whole tangent space
T,N.
yLet zg € M, yo € N be given and let og : T, M — T, N be a linear
map. Let v : [a,b] — M be a piecewise geodesic with v(a) = xo, i.e., there
exists a partition a = to < t; < --- < tx = b of [a,b] such that v|j, 4.,
is a geodesic for all . Using the linear map oy it is possible to define a
piecewise geodesic p : [a,b] — N and a linear map o : T,y M — T,y N
induced by v in the following way: we first define inductively a sequence
of geodesics p; : [ti,ti+1] — N and of linear maps o; : TyeyM — Ty N
Let po and o) be respectively the geodesic and the linear map induced by
the geodesic 7|, ¢, and by 0¢. Assuming that p; and 04, are defined we
let pir1 and o542 be respectively the geodesic and the linear map induced
by the geodesic 7|, +,,,) and by oi+1. Finally, we let p: [a,b] — N be the
piecewise geodesic such that ju|y, 1. ,) = i for all i and we let o = oy.

Theorem 5.3 (Cartan-Ambrose-Hicks). Let M, N be smooth manifolds
endowed respectively with connections VM and VV; assume that VV is
geodesically complete and that M is connected and simply-connected. Let
T9 € M, yo € N be given and let og : TyyM — Ty, N be a linear map.
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For each piecewise geodesic 7y : [a,b] — M with v(a) = xo denote by
Ky i a,b] = N and by oy : TypyM — T, )N respectively the piecewise
geodesic and the linear map induced by the piecewise geodesic v and by
0o. Assume that for every piecewise geodesic y the linear map o, relates
TM with TV and RM with RN. Then there exists a smooth affine map
f M — N such that for every piecewise geodesic vy : [a,b] — M we have
fo~y=py and df(y(b)) = o; in particular, f(zo) = yo and df(zo) = 0o.

Remark 5.4. In the statement of the Cartan—Ambrose-Hicks Theorem,
if one assumes in addition that op is an isomorphism, and that V™ is
geodesically complete then it follows that the affine map f: M — N is a
covering map.

Corollary 5.5. Let (M,gM), (N,g") be Riemannian manifolds with
(N,g") complete and M connected and simply-connected. Let zg € M,
yo € N be given and let og : TyyM — T, N be a linear isometry onto
a subspace of Ty,N. For each piecewise geodesic vy : [a,b] — M with
v(a) = xo denote by p : [a,b] = N and by o : TyyyM — T, )N respec-
tively the piecewise geodesic and the linear map induced by the piecewise
geodesic vy and by og. Assume that for every piecewise geodesic -y the linear
map o, relates RM with RN. Then there exists a totally geodesic isometric
immersion f: M — N with f(xq) = yo and df(zo) = 0g.

Proof. It follows immediately from Theorem 5.3; observe that the condition
that f is totally geodesic follows from the fact that f is affine. O

We now show how the proof of Theorems 5.1 and 5.3 can be obtained
as an application of the local and the global version of the “single leaf
Frobenius Theorem” (Theorems 2.5 and 3.11).

Consider the vector bundle E = Lin(T'M,TN) over M x N whose fiber
at a point (z,y) € M x N is the space of linear maps Lin(T,M,T,N).
Notice that E coincides with the tensor bundle 7{ (T'M*) ® 73(T'N ), where
m and s denote the projections of the product M x N. The connections
VM and V¥ naturally induce a connection V on E given by:

(15) (Vww)9)(X) = Vig 0y (0(X)) = o (V31 X),

wherev € TM,w € TN, X is a smooth vector field on M and o : M xN —
E is a smooth section of E. In the formula above, ¢(X) : M x N — TN
is regarded as vector field along the projection 7 : M x N — N on N.

Given a smooth map f : U — N defined on an open subset U of M
then the differential df : U — E can be regarded as section of E along the
map U 3 z — (z, f(z)) € M x N, so that it makes sense to consider the
covariant derivative of df with respect to the connection V.
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Lemma 5.6. A smooth map f : U — N defined on an open subset of M
is affine if and only if df is parallel with respect to V.

Proof. Given v € TM and a smooth vector field X on U we compute:
(Vo(dN)(X) = V' (df (X)) - df (V' X).
The conclusion follows. O

Lemma 5.7. Let A: t — (v(t), u(t), o0(t)) be a smooth curve on E, i.e., v
is a curve on M, p is a curve on N and o(t) is a linear map from T ,) M to
TuyN for allt. Then X is parallel with respect to V (or, equivalently, A is
tangent to the horizontal distribution corresponding to V) if and only if the
following condition holds: for every VM -parallel vector field t — v(t) € TM
along v, the vector field t — o(t)v(t) € TN along u is V" -parallel.

Proof. Let t — v(t) be a vector field along . Let us denote by %. %Ma,nd

E%N respectively the covariant derivatives with respect to the parameter ¢
corresponding to the connections V, VM and V¥. The conclusion follows

easily from the following formula:
Do) = (B o)) + o) B v(),
observing that A is V-parallel if and only if aD;a(t) =0. O
The geometric interpretation of Lemma 5.7 is given by the following:

Corollary 5.8..Let A be as in the statement of Lemma 5.7 and let to in the
domain of A be fized. Then A is parallel with respect to V if and only if the
following condition holds: for all t, the linear map o(t) : TyyM — Ty N
is given by the composition of VM -parallel transport along v, o(to) and
VN -parallel transport along p. O

We now explain in which form the “single leaf Frobenius Theorem”
(Theorem 2.5) is going to be applied. We consider the smooth submer-
sion m : E — M given by the composition of the canonical projection
E — M x N with the first projection m; : M x N — M. Given z € M,
y € N, o € Lin(T; M, T, N) then the tangent space T F is identified with
the direct sum of T, M @ T, N (the horizontal space corresponding to the
connection V) and Lin(7, M, T, N) (the tangent space to the fiber). We
will now define a distribution D on the manifold F that is horizontal with
respect to the submersion 7 : E — M. We set:

(16) D, = Gr(o) @ {0} C T,M & T,N & Lin(T,M,T,N) = T,E,
where Gr(o) C T, M @ T, N denotes the graph of the linear map o.
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Lemma 5.9. Let s: U — E be a smooth section of E defined on an open
subset U of M ; we write s(z) = (f(z),0(z)), where f : U — N is a smooth
map and o(z) € Lin(Tz M, Ty,)N), for all x € U. Then s is D-horizontal
if and only if o(x) = df(z) for all x € U and f is affine.

Proof. Given z € U, v € T, M then the component of ds.(v) in T,M &
Tf()N is equal to (v,dfz(v)). Thus, s is D-horizontal if and only if o is
V-parallel and o(x) = df(x), for all z € U. The conclusion follows from
Lemma 5.6. 0

Lemma 5.10. Let A be as in the statement of Lemma 5.7 and let ty in
the domain of A be fized. Assume that v is a geodesic on M. Then A is
D-horizontal if and only if the following conditions hold:

e 11 15 a geodesic on N;

e 1t/(to) = a(to)Y (to);

e for allt, the linear map o(t) : Ty(yM — T, )N is given by the com-
position of VM -parallel transport along vy, o(to) and V" -parallel
transport along .

Proof. Clearly X is D-horizontal if and only if A is parallel with respect to
V and p/(t) = o(t)7/(t), for all t. The conclusion follows from Lemma 5.7
and Corollary 5.8. O

Corollary 5.11. Let g € M, yo € N be fized and let og : TpoM — TyyN
be a linear map. Let vy : [a,b] — M be a piecewise geodesic with vy(a) = zo.
Then A : [a,b] 3 ¢ + (¥(t),u(t),0(t)) € E is the horizontal lift of v with
Aa) = (xo,¥0,00) if and only if p : [a,b] — N is the piecewise geodesic
induced by vy and oo and o(t) is the linear map induced by 7|[,4 and oo,
for all t. O
Lemma 5.12. The curvature tensor RY of the connection V of E is given
by:
R(, ) (01, 1), (v2,w2)) 0 = Ry (w1, wz) 0 0 — 0 0 Ry (v, 2),

for all (z,y) € M x N, v1,v2 € T, M; wy,wz € TyN, o € Lin(T, M, TyN).
O

Lemma 5.13. Let P, QQ be smooth manifolds, V a connection on @ and
h: P — @ be a smooth map. Given smooth vector fields X, Y in P then:

Vx(dh(Y)) - Vy (dh(X)) — dh([X,Y]) = T(dh(X),dh(Y)),
where T denotes the torsion of V.

Proof. 1t is a standard computation in calculus with connections (see Prop-
osition B.8). O
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We will now compute the Levi form of the distribution D. Given xr € M,
y € N, o € Lin(T,M,T,N), the Levi form of D at the point o € E is a
bilinear map 2? : Dy x Dy — T,E/D,. We identify the space D, with
T.M by the isomorphism:

T;M 3 v+ (v,0(v),0) € D, C TyM & T,N & Lin(T,M,T,N) 2 T,E
Moreover, the surjective linear map:
(17) T,E 3 (v,w,7) — (w — o(v),7) € TyN & Lin(T: M, T, N)

has kernel D, and thus induces an isomorphism from the space T,E /D,
onto TyN & Lin(T; M, T,N). Hence, the Levi form of D at o will be iden-
tified with a bilinear map:

£2 ..M x T,M — T,N & Lin(T M, T, N).
We now compute E?.

Lemma 5.14. Givenz € M,y € N, o € Lin(T; M,T,N), the Levi form
of D at the point o € E is given by:

£2(vr,12) = (o(T¥(v1,2)) = TN (o(01), o(v2),

o0 RY (v1,v2) — R (0(v1),0(v2)) 0 a),
for all vy,v9 € T, M.

Proof. Given a smooth vector field X on M, we define a smooth vector
field X on E by setting:

(18)

X(z,y,0) = (X(2),0(X(2)),0) € TM & T,N & Lin(T:M,T,N) = T,E

forallz € M,y € N, o € Lin(T,M,T,N). Observe that X is D-horizontal.

Let z € M,y € N, o € Lin(T,M,T,N), v1,v3 € T, M be fixed. Choose
smooth vector fields X;, X2 on M with X;(z) = v, Xo(z) = v2. In
order to compute the Levi form of D at the point o it suffices to com-
pute the Lie bracket [5("1,}?2] at the point 0. The vector [X;, X5, is
identified with an element of T, M & TN @ Lin(T M, T,N). The compo-
nent in Lm(TxM T,N) of such vector can be computed using Lemma 4.1,
since X 1 and X2 are both horizontal with respect to the connection V
of E; thus, the component of [XI,XQ]U in Lin(T;M,T,N) is equal to
—RE((Ul,G(Ul)),(?)2,0'(1)2)))0’. Let us now compute the component of
[i’l,)hfg],, in T,M & TyN; this is just dﬂg([)?l,)?g]a). Consider the con-
nection VM*N on M x N induced from VM and V¥; its torsion TM*¥ ig
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given by:
TN (v, wn), (v2,w2)) = (T™ (vy,v2), TN (wy, w2)).

We now compute dﬂo([}?l,fﬂa) using Lemma 5.13 with P = E, Q =
M x N and h = 7. We get:

(19) V¥ (dn(Xa)) — VI (dn(X1)) — drr([X1, X))
= (TM (X1, X2), TV (0(X1), 0(X2))).-
We compute V@XN(dw(fg)) as follows:

DMxN

VM"N(dfr(X )) = dr (X2(A(1))),

where ) : |—¢,e| — E is an integral curve of X; with A(0) = 0. Thus
A(t) = (z(t),y(t),o(t)), where t — z(t) € M is an integral curve of X,
y'(t) = o(t)2'(t) and t — o(t) is V-parallel. Hence:

DN g (Xa(A(2))) = D“"”(Xz(x(t)) (t)Xz(x(t)))
= (dt Xa(2(t), > [a t) Xa(z(t))])
o parallel (dg X2(I(t))‘0'(t)% Xz(;,r'(t)))-

Evaluating at ¢ = 0 we obtain:
DMXN

(20) VN (dn(Xy)) = § dﬂ(iz(f\(t)))Lzo = (V¥ X2,0(V¥ X3)),
where the righthand side of (20) is evaluated at the point x. Similarly:
(21) VN (dr (X)) = (VE, X1, 0(VH, X))
Using (19), (20) and (21) we get:
dm, ([X1, X2]o)

= (%1, Xelz, o([X2, Xala) + o (T (X1, X2)) = TV (0(X1), 0(X2)) )
Hence, recalling Lemma 5.12:
(22) [X1, Xalo = ([X1,X2]x,

o([X1, Xalz) + o(TM (X1, X2)) — TV (0(X1), 0(X2)),
70 RY (X1, X) = Ry (o(X1), 0(X2) 0 ).

The conclusion follows recalling formula (17) that gives the identification
between T,E /D, and T,N & Lin(T,M,T,N). O
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Corollary 5.15. Given z € M, y € N, o € Lin(T,M,T,N), then the
Levi form of D at the point ¢ € E vanishes if and only if the linear map
o : TeM — T,N relates TM with TV and RM with RV.

Proof. Tt follows from Lemma 5.14. O

Proof of Theorems 5.1 and 5.8. 1t follows from Theorems 2.5 and 3.11,
keeping in mind Examples 2.2 and 3.1, Lemmas 5.9 and 5.10, and Corol-
lary 5.15. 0

5.2. Higher order Cartan—Ambrose—Hicks theorem. Given a tensor
field 7 on a manifold endowed with a connection V, we denote by V(") its
r-th covariant derivative, for r > 1; we set vOr =1,

Theorem 5.16. Let M, N be real-analytic manifolds endowed with real-
analytic connections VM and VN, respectively. Let o € M, yo € N be
given and let og : TpyyM — T, N be a linear map. If for all v > 0 the
linear map o¢ relates VIOTM with VOTN and VO RM with VTIRY then
there ezists a real-analytic affine map f : U — N defined on an open

neighborhood U of xo in M satisfying f(zo) = yo and df(z¢) = 0p.

Proof. We will apply Theorem 2.7 to the distribution D on E defined in
(16). As before, for z € M, y € N, ¢ € Lin(T,M,T,N), we use the
identification:

T,E =2 T,M & T N & Lin(T,M,T,N).

Given a smooth vector field X on M, we define a D-horizontal vector ﬁgld
X on E as in (18). Recall that for Xy, X2 € I'(T M), the bracket [X;, X2]
was computed in the proof of Lemma 5.14 (see (22)). By Remark 2.8, the
thesis will follow once we show that the iterated brackets:

(23) [if+11 "R ,i]} ti_g'f [fr-l-l, I)?r,. ey [)?2};?1] . ]]’

evaluated at o € E are in Dy, for all Xi,..., X, € I(TM) and all r > 1.
Forr >0,z € M,y € N, o € Lin(T, M,T,N) we set:

TEN Ky vns Kpga) =0 (VOTH( Xy, X))
- VOTN (5(Xy),...,0(Xr+2)) € TyN,
R (X1,..., Xr42) =00 VORM(X,, ..., X, 40)
— VRN (a(Xy),...,0(Xr42)) 0 0 € Lin(To M, T,N),

for all Xi,...,Xr42 € TeM. The hypotheses of the theorem say that Toy
and ﬂq((,:,) vanish for all » > 0. Observe that T(") and %) are, respectively,
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sections along the map m : E — M x N of the vector bundles over M x N
given by:

(®(ar1‘TM)‘) ®@mTN and (@(riTM)" ) ® (riTM)* ® TN,
r+2 r+2
where 71 and 72 denote the projections of the product M x N.
Our plan is to show that the iterated bracket (23) can be written in the
form:
24) [Xrtr,ee s X = (0,20 (Xrirse ., X1), ROV (X, ., X0))
+(0,£(FO %O 702 Rj-D)) 4 terms in TT(D),

for all > 1, where £") is a section along the map 7 : E — M x N of the
vector bundle over M x N given by:

Lin( é [( ®(WITM)*) @MTN® ( R (xiT™) )@(w}TM)*@rr;TN] ,
i=0 i+2 i+2

TN & (riTM)" @ m}TN).

Once formula (24) is proven, the conclusion follows easily by induction on
r. We will now conclude the proof by showing formula (24) by induction
on r. For r =1, we have (recall (22)):

(X2, 1] = (0,0(T (X2, X1)) — T (0(Xa), (X)),
o0 RM(Xy, X1) — RN (0(Xa),0(X1)) 0 a) + terms in T°(D)
= (0,59 (X, X1), RO (X,, X,)) + terms in [°(D),

proving the base of the induction. The induction step can be proven by
applying ad %,,s 8O both sides of (24), keeping in mind Lemma 5.17 below
and the following formulas:

(Vhor‘r(i))a (Zl J(Z)) = ‘I(H-E}(Z: e )a
(Vior9)5(2,0(2)) = REHD(Z,---),
where Z is a vector field on M. This concludes the proof. O

Lemma 5.17. Let A be a section along the map moom : E — N of the
tangent bundle of N and let B be a section along the map w: E — M x N
of the vector bundle E, so that (0, A, B) is a vector field on the manifold
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E. Let Z be a vector field on M. Then:

1Z,(0,4,B)l, = (0, Vi A(Z,0(2)) - B(2) - TV (0(2), 4),
VieB(Z,0(2)) - RY(0(2),4) 00), o€,

where VY A (resp., ViorB) denotes the restriction of VNA (resp., of VB)
to the horizontal subbundle of TE determined by the connection of E.

Proof. We compute the horizontal component of [2 ,(0,A, B)] using
Lemma 5.13 with P=FE, @ = M x N and h = w. We have:

dﬂ'a{(Zs U(Z)$ 0)1 (Oa Aa B)] = V?é;-?z),g) (0: A) - V&ii{\_;) (Z'.| J(Z))
- TMXN((Z! J(Z)): (0! A)) )
Clearly:
TM*N((2,0(2)),(0,4)) = (TM(2,0),TN (0(2),4)) = (0, TV (0(2), 4))

and:
V00 A) = (0, Vi, A(Z,0(2))).

Let t — (z(t),y(t),o(t)) be an integral curve of (0, 4, B), i.e., t — z(t) is
constant, § = A and B0 = B. We compute:
MxN

V?&Eﬁ;)(Z,O’(Z)) =& Z(t),0(t) Zy1)) = (0,B(Z)).

Let us now compute the vertical component of [2 ,(0,A,0)]. Since both
Z and (0, A,0) are in the horizontal subbundle of TE determined by the
connection of E, the vertical component of [Z, (0, A,0)] can be directly
computed using Lemmas 4.1 and 5.12, as follows:

vertical component of [Z, (0, 4,0)], = —RE((Z,O'(Z)), (0,4))o
=00RM(Z,0)— RN (s(2),A) o0 = —RN(0(2),4) o 0.

Finally, we compute the vertical component of [5 ,(0,0,B)]. Let W be a
vector field on M and a be a 1-form on N; we define a map fw,o: E — R

by setting:

fwalo) = a(a(W)).
Let z € M, y € N, 0 € Lin(T,M,TyN) be fixed and assume that
VMW (z) = 0, VNa(y) = 0, so that dfw(c) annihilates the horizontal
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subspace of T, E' determined by the connection of E. We compute:
(0,0, B)(fw,a) = a(B(W)),
Z(fwa) = (Vo(z2) (2(W)) + a(a(VzW)),
Z((0,0, B)(fwa)), = (Vo(2)@)z(BIW)) + a(Vhor Bo(Z, 0(2)) (W))
+a(B(V2,W)) = &(Vhor Bo(Z,0(2))(W)),
(0,0, B)(Z(fw,a)), = (VB(2)®)2(0(W)) + (Voz)0)= (B(W))
+a(B(Vz,W)) =0,
so that:
Z,(0,0, B)|(fw,a) = &(Vhor B (Z,0(2))(W)).

Hence, the vertical component of [2, (0,0,B)], is equal to
VhorBs(Z,0(Z)). This concludes the proof. O

Proposition 5.18. Let M, N be real-analytic manifolds endowed with real-
analytic connections VM and VN, respectively. Assume that V¥ is geodesi-
cally complete and that M is (connected and) simply-connected. Then every
affine map f : U — N defined on a nonempty connected open subset U of
M eztends to an affine map from M to N. In particular, if in addition
ro € M, yo € N, op € Lin(T,,M,T,,N) satisfy the hypotheses of Theo-
rem 5.16 then there exists an affine map f : M — N with f(xp) = yo and
df(xo) = oo. '

Proof. If D is the distribution on E defined in (16) then, by Lemma 5.9,
s(z) = (f(z),df(z)) is a D-horizontal section of 7 : E — M defined in
U. The geodesical completeness of VV guarantees that hypothesis (b) of
Proposition 3.12 is satisfied; hence, such proposition gives a global hori-
zontal section of . O

A special case of Proposition 5.18, namely when the manifolds M and
N have the same dimension and oy is an isomorphism, is proved in [2, p.
259-261].

An affine symmetry around a point g € M is an affinemap f: U — M
defined in an open neighborhood U of zg with f(xg) = zp and df(zg) =
—Id.

Corollary 5.19. Let M be a real-analytic manifold endowed with a real-
analytic connection V. Let zg € M be fized. Then there exists an affine
symmetry around xq if and only if:

(25) veIT,, =0, and V@HVR, =0, jorallr>0.



370 P. Piccione and D. Tausk

Moreover, if M is (connected and) simply-connected and complete then
condition (25) is equivalent to the existence of a globally defined affine
symmetry f : M — M around xo.

Proof. Apply Theorem 5.16 with M = N, y9 = g and g9 = —Id. For the
global result apply Proposition 5.18. O

Appendix A. A globalization principle

Definition A.1. Let X, X be topological spaces and 7 : X > Xbea
map. An open subset U C X is called a fundamental open subset of X if
7~ (U) equals a disjoint union |J;¢; U; of open subsets U; of X such that
7|y, : Uy — U is a homeomorphism for all i € I. We say that 7 is a covering
map if X can be covered by fundamental open subsets.

Obviously every covering map is a local homeomorphism.

Given a local homeomorphism 7 : X — X then by a local section of m
we mean a continuous map s : U — X defined on an open subset of X
with 7o s = Idy. '

Lemma A.2. Let X, X be topological spaces and m : X — X be a local
homeomorphism. Assume that X is Hausdorff. Let U be a connected open
subset of X satisfying the following property:
(%) for every z € U and every & € X with w(Z) = z there exists a local
section s : U — X of m with s(z) = %.
Then U is a fundamental open subset of X.

Proof. Let § be the set of all local sections of m defined in U. We claim
that:
7Y (U) = U s(U).
sES

Indeed, if s € S then obviously s(U) C 7#~!(U); moreover, given & €
71 (U) then = 7(%) € U and by property (*) there exists s € S with
s(z) = . Thus Z € s(U). This proves the claim. Now observe that s(U) is
open in X for all s € S; moreover, 7|y : s(U) — U is a homeomorphism,
being the inverse of s : U — s(U). To complete the proof, we show that
the union | J,.g s(U) is disjoint. Pick s,s" € S with s(U)Ns'(U) # 0. Then
there exists z,y € U with s(z) = s/(y). Observe that:

z=n(s(z)) =7(s(y)) =,

and thus s(z) = s'(z). Since U is connected and X is Hausdorff it follows
that s = s'. O
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Corollary A.3. Let X, X be topological spaces and m : X — X be a
local homeomorphism. Assume that X is Hausdorff and that X is locally
connected. If every point of X has an open neighborhood satisfying property
(x) then 7 is a covering map. O

Let X be a topological space. A pre-sheaf on X is a map ‘B that assigns
to each open subset U C X a set ‘P(U) and to each pair of open subsets
U,V C X withV C U amap Pyv : B(U) — P(V) such that the following
properties hold:

e for every open subset U C X the map Py y is the identity map of
the set P(U);
e given open sets, U, VW C X with W C V C U then:

Bv.w o Puyv = Puw.

We say that the pre-sheaf ‘B is nontrivial if there exists a nonempty open
subset U of X with P(U) # 0.

A.l. Example. For each open subset U of X let P(U) be the set of all
continuous maps f : U — R. Given open subsets U, V of X with V C U
we set Puv(f) = flv, for all f € P(U). Then P is a pre-sheaf over X.

A sheaf over a topological space X is a pair (S, ), where S is a topo-
logical space and 7 : § — X is a local homeomorphism.

Let B be a pre-sheaf over a topological space X. Given a point z € X,
consider the disjoint union of all sets ‘B(U), where U is an open neigh-
borhood of z in X. We define an equivalence relation ~ on such disjoint
union as follows; given f; € B(U1), fo € P(Us2), where Uy, Us are open
neighborhoods of z in X then f; ~ f5 if and only if there exists an open
neighborhood V' of z contained in U1NUs such that Py, v(f1) = Bu,,v(f2).
If U is an open neighborhood of z in X and f € B(U) then the equivalence
class of f corresponding to the equivalence relation ~ will be denote by
[f]z and will be called the germ of f at the point z. We set:

Sz = {[flz : f € B(U), for some open neighborhood U of z in X}.

Let & denote the disjoint union of all &, with z € X. Let 7 : & — X
denote the map that carries &, to the point z. Our goal now is to define
a topology on &. Given an open subset U C X and an element f € PB(U)
we set:
V(f)={[flz:x€U} C8.
The set:
{V(f) : f €PB(U), U an open subset of X}

is a basis for a topology on &; moreover, if & is endowed with such topology,
the map m : & — X is a local homeomorphism, so that (&, ) is a sheaf
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over X. We call (&,) the sheaf of germs corresponding to the pre-sheaf
B. Observe that if U is an open subset of X and f € B(U) then the map

f:U — & defined by
_)E(’J) = [f]xr IEU’

is a local section of the sheaf of germs defined in U.

Definition A.4. We say that the pre-sheaf f has the localization property
if, given a family (U;);cs of open subsets of X and setting U = U;c; Ui
then the map:

(26) PW) > f— (Powi(f))ic; € []BWH)

i€l
is injective and its image consists of all the families (fi)ics in [[;c; B(Us)
such that Epyhy‘.nyj (fg) = ‘BU,‘,U;HU;‘ (fj), for all 7,7 € I.

Remark A.5. If the pre-sheaf P has the localization property then for
every local section s :’U — G of its sheaf of germs G there exists a unique
f € B(U) such that f =s.

Definition A.6. We say that the pre-sheaf ' has the uniqueness property
if for every connected open subset U C X and every nonempty open subset
V € U the map Py v is injective. We say that an open subset U C X has
the eztension property with respect to the pre-sheaf B if for every connected
nonempty open subset V' of U the map By is surjective. We say that the
pre-sheaf P has the extension property if X can be covered by open sets
having the extension property with respect to B.

Remark A.T7. If the pre-sheaf P has the uniqueness property and if X is
locally connected and Hausdorff then the space G is Hausdorff. If X is
locally connected and if U is an open subset of X having the extension
property with respect to the pre-sheaf P then U has the property (*)
with respect to the local homeomorphism 7 : & — X. It follows from
Lemma A.2 that if X is Hausdorff and locally connected and if the pre-
sheaf P has the uniqueness property and the extension property then the
map 7 : & — X is a covering map.

Proposition A.8. Assume that X is Hausdorff, locally arc-connected, con-
nected, and simply-connected. If B is a pre-sheaf over X satisfying the lo-
calization property, the uniqueness property and the extension property then
the open set X has the extension property for B, i.e., for every nonempty
open connected subset V' of X the map Px,v : P(X) — P(V) is surjective.
In particular, if ‘B is nontrivial then the set P(X) is nonempty.
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Proof. Let V be a nonempty open connected subset of X and let f € P(V)
be fixed. We will show that f is in the image of Pxy. Let 7: & — X
denote the sheaf of germs of YB. By Remark A.7 r is a covering map. Choose
an arbitrary point zo € V and let &y be the arc-connected component of
[flzo in &. Since X is locally arc-connected, the restriction of 7 to & is
again a covering map. By the connectedness and simply-connectedness of
X, e, : Go — X is a homeomorphism. The inverse of 7|g, is therefore a
global section s : X — & and, by Remark A.5, there exists g € P(X) with
g = s. Now [glzo = g(z¢) = s(z0) = [fl]s, and hence, by the uniqueness
property, Bx,v (9) = f. H

Appendix B. A crash course on calculus with con-
nections

Given a smooth vector bundle 7 : E — M over a smooth manifold M,
we will denote by I'(E) the space of all smooth sections s : M — FE of
E. Observe that I'(E) is a real vector space and it is a module over the
commutative ring C*°(M) of all smooth maps f : M — R. Given an open
subset U of M, we denote by E|y the restriction of the vector bundle E to
U,ie., Ely =7 Y(U).

Definition B.1. A connection on a vector bundle r : £ — M is a R-
bilinear map:

V:I'(TM) xT(E) 5 (X,8) — Vxs € I'(E)
that is C*°(M )-linear in the variable X and satisfies the Leibnitz derivative
rule:

Vx(fs) = X(f)s+ fVxs,

for all X e I(TM), s e I'(E), f € C®(M).
B.1. Example. If Ej is a fixed real finite-dimensional vector space and

E = M x Ej is a trivial vector bundle over M then a section s of E can be
identified with a map s : M — Ej and a connection on E can be defined

by:

(27) Vxs = ds(X),

for all X € T'(TM). We call (27) the standard connection of the trivial
bundle E.

It follows from the C*°(TM)-linearity of V in the variable X that
Vxs(z) depends only of the value of X at the point z € M, ie., if
X(z) = X'(z) then Vxs(z) = Vxss(z). Given s € I'(E), x € M and
veT, M, we set:

V.8 = Vxs(z),
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where X € T'(TM) is an arbitrary vector field with X(x) = v. For all
r € M we denote by Vs(z) : T, M — E, the linear map given by v — V,s.
Thus, given s € I'(E), we obtain a smooth section Vs of TM* ® E.

It follows from the Leibnitz rule that if U € M is an open subset then
the restriction of Vxs to U depends only of the restriction of s to U.
Thus, given an open subset U of M, a connection V on E induces a unique
connection VY on E|y such that:

(28) VY(sly) = Vs,
for all s € T(E), ve TU.

Remark B.2. Given connections V and V' on a vector bundle 7 : E — M
then their difference is a tensor; more explicitly:

(X,s) = Vxs — Vixs € (E), X € (TM), s €I(E),

is C°°(M)-bilinear and hence defines a smooth section t of the vector bundle
TM*® E* ® E. Moreover, if V is a connection on F and t is a smooth
section of TM* @ E* @ E then V + t is also a connection on E. If t is a
section of TM* @ E* @ E then, given z € M, v € T, M, we identify t(v)
with a linear operator on the fiber E,.

Given vector bundles 7 : E — M, 7 : E — M over the same base
manifold M then a vector bundle morphism is a smooth map L : E — E
such that # o L = 7 and such that L|g, : E; — E, is a linear map, for all
x € M. We will denote the restriction of L to E, by L,. If L : E — Eis
a vector bundle morphism such that L, is an isomorphism for all z € M
then we call L a vector bundle isomorphism. If A is an open subset of
Eand L : A — E is a smooth map such that # o L = 7|4 then we call
L a fiber bundle m_gfphism Given r € M, we write A, = AN E, and
L, =L|a, : Ay — E;.

Definition B.3. Given vector bundles 7 : E — M, # : E — M over
the same base u_:}anifold M, a vector bundle morphism L : £ — 1‘:1 and
connections V, V on E and E respectively then we say that V and V are
L-related if:

Vx(L(s)) = L(Vxs),
forall X e I'(TM), s € I'(E).

In what follows, we will deal with several constructions involving con-
nections on different vector bundles. In order to avoid heavy notations,
we will usually denote all these connections by the symbol V; it should
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be clear from the context which connection the symbol V refers to. For
instance, formula (28) will be rewritten in the following simpler form:

Vu(8ly) = Vys.

Definition B.4. Given a connection V on a vector bundle = : E — M,
then the curvature tensor of V is defined by:

(29) R(X,Y)s = VxVys — VyVxs — Vxy|s € [(E),
for all X,Y € I(TM), s € [(E).

Since the righthand side of (29) is C°°(M)-linear in the variables X,
Y and s, it follows that R can be identified with a smooth section of the
vector bundle TM* @ TM* ® E* ® E. Clearly, R(X,Y)s is anti-symmetric
in the variables X and Y.

The notion of torsion is usually defined only for connection on tangent
bundles. We will present a slight generalization of this notion.

Definition B.5. Let m : E — M be a smooth vector bundle and let
t: TM — E be a vector bundle morphism. Given a connection V on E
then the t-torsion of V is defined by:

(30)  THX,Y)=Vx((Y)) - Yy (UX)) - ¢([X,Y]) € D(E),

for all X|Y € I'(T'M). If E = TM and ¢ is the identity map of TM, we
will write simply T and call it the torsion of V.

Again, the righthand side of (30) is C°°(M)-linear on the variables X
and Y, so that T* can be identified with a smooth section of the vector
bundle TM* @ TM*® E. Clearly, T*(X,Y) is anti-symmetric in X and Y.

In what follows we will study some natural constructions with vector
bundles endowed with connections and we will present some formulas for
the computation of torsions and curvatures. We will consider constructions
that act on the basis of the vector bundles and constructions that act on
their fibers.

Given smooth manifolds, M, N, a smooth vector bundle = : E — M
over M and a smooth map f: N — M then we denote by f*E the pull-
back of E by f which is a vector bundle over N whose fiber at a point
z € N is equal to Ef(;). Observe that there is a natural identification of
smooth sections of the bundle f*E with smooth sections of E along f, i.e.,
smooth maps s : N — FE such that mo s = f. Notice that every smooth
section s : M — FE of E gives rise to a smooth section of E along f given
by so f: N — E; we may thus identify s o f with a section of f*E.

Proposition B.6. Given smooth manifolds M, N, a smooth vector bundle
E over M endowed with a connection V and a smooth map f: N — M
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then there ezists a unique connection f*V on the pull-back bundle f*E
such that:
(31) (f*V)u(s0 f) = Vasw)s,
for all s € I'(E) and allv € TN.
The next result follows easily from Proposition B.6.

Proposition B.7. Let P, N, M be smooth manifolds, E be a vector bundle
over M endowed with a connection V and g : P — N, f: N — M be
smooth maps. Then:

(32) (fog)'V =f"(g"V);
moreover, if 1 : U — M denotes the inclusion map of an open subset U

of M then i*E can be naturally identified with the bundle E|y and i*V

coincides with the induced connection VY.

Identity (32) can be interpreted as a chain rule as follows; given a section
§: N — E of F along f and v € TP then:

& by (32) ; o/ e by (31) , .,
((fo9)'V),(s09) £ (" (F*V)),(500) "EY (£ V)agiw)s.
We have the following natural formula to compute the curvature and the
torsion of a pull-back connection.

Proposition B.8. Given smooth manifolds M, N, a smooth vector bundle
E over M endowed with a connection V and a smooth map f : N — M
then the curvature tensor of f*V is given by:

RV (v, w)e = RJY(E) (df(z)v,df(z)w)e,

forallz e N,vywe TyN, e € (f*E), = E¢ (). Moreover, given a smooth
vector bundle morphism ¢ : TM — E, then todf : TN — E is identified
with a vector bundle morphism i : TN — f*E and the the following formula
holds:

(33) Ty (v, w) = Tfgy (df (z)v, d f (z)w),
forallz € N, v,w e T,N.

Observe that if E = TM and ¢ is the identity of TM then formula (31)
means that:

(F*V)x(df(Y)) = (fF*V)y (df(X)) - df([X,Y]) = T(df(X),df(Y)),
for all X,Y € I'(TN).

Now we consider constructions acting on the fibers of the vector bundles.

To this aim, we need some categorical language. Given an integer n >
1, we denote by Yec" the category whose objects are n-tuples (V;), of
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real finite-dimensional vector spaces and whose morphisms from (V;)™_; to
(Wi)ie, are n-tuples (T;)2, of vector space isomorphisms T; : Vi — Wi;.
We set ‘I'J'ec = Wec. A functor § : Vec" — YVec is called smooth if for any
object (V;), of Lec™ the map:

(34) §: GL(V}) X «+- x GL(V,) — GL(F(W,...,V4))

is smooth. Observe that (34) is a Lie group homomorphism; its differential
at the identity is a Lie algebra homomorphism that will be denoted by:

F:8l(Vh) x -+ x gl(Vp) — gl(§(WA,..., Va)).

Given vector bundles E', ..., E™ over a smooth manifold M we obtain
naturally a new vector bundle F(E,..., E") over M whose fiber at a point
x € M isequal to F(EL, ..., E"). Given asmooth manifold N and a smooth
map f : N — M, we may identify vector bundles f*(F(E',...,E")) and
F(f*E',..., f*E™). Given vector bundle isomorphisms L' : Ef — E¥, i =
1,...,n, then we obtain a vector bundle isomorphism L = §(T",...,T")
from §(E!,...,E") to F(E,..., E") by setting:

Ly = §(Ls,-..,L}),

forall z € M.
We have the following functorial construction for connections.

Proposition B.9. Given an integer n > 1 and a smooth functor § :
Vec™ — Yec then there exists a unique rule that associates to each smooth
manifold M, each n-tuple of vector bundles (E',. .., E™) over M and each
n-tuple of connections (V',...,V") on (E',..., E™) respectively, a connec-
tion V = F(V,...,V") on F(E',...,E™) satisfying the following proper-
ties:

(a) (naturality with pull-backs) given smooth manifolds N, M and a

smooth map f: N — M then

FEVh V) =F(VE L SV

(b) (naturality with morphzsm) given vector bundle isomorphisms L* :
E — E‘, Rl I T 7 V‘ is a connection on E' which is
Li-related with a connecfwn Vi on E' then F(V1,..., V") is
S(L,...,L")-related with F(V',...,V");

(c) given connections V and V' on E* with VI — V' =t',i=1,...,n,
then:

V. VMxs = F(V,.. V) xs = F(H(X),...,t"(X))s,

for all s € T(F(E,.. .,E’“));
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(d) (trivial bundle property) If V' is the standard connection of the
trivial bundle M x E} then §(V',..., V") is the standard connection
of the trivial bundle M x F(E}, ..., E}).

Let § = (§%,...,3™) be an m-tuple of functors F : LVec" — Vec and
let & : Yec™ — YVec be a functor; we denote by & o § : Vec" — Vec the
smooth functor defined? by:

(BoFV,...,Va) =6(F (V,..., Va),... 8" (V1,---, Vi),
for all objects Vi, ..., V,, of Yec.

Proposition B.10. Let § = (§',...,§™) be an m-tuple of smooth functors
T : Vec™ — Yec and let & : Vec™ — Vec be a smooth functor. Given
vector bundles E1, ..., E™ over a smooth manifold M endowed respectively
with connections VY, ..., V" then:

(BOFN V55 V) STV ™ FVY s V).

Moreover, if 3 : Vec — Vec denotes the identity functor of Vec then, given
a connection V on a vector bundle E, we have:

I(V)=V.

Proposition B.11. Given a smooth functor § : Yec" — Vec and smooth
vector bundles 7t : E* — M endowed with connections V', i = 1,...,n,
then the curvature tensor of the connection F(V,...,V") is given by:

R, (v,w) = '@”(Ri(v, w),... ,R:(u,w)),

for all z € M, v,w € T, M, where R* denotes the curvature tensor of V¢,
s R

Definition B.12. Given a positive integer n and smooth functors § :
Yec" — Vec and F : Vec™ — Wec then a smooth natural transformation
p from § to §F’ is a rule that associates to each object (V;)7, of Lec" an
open subset Ay, v.) of F(V4,...,V,) and a smooth map:

i Va AV Ve — F (Ve Vi)
such that, given objects (V;)I,, (W;), of Yec™ and a morphism (T;)7;

=1

from (V,‘)?:I to (‘fV,')?zl then S(T!;- N ,Tn) carries AVl,-‘-,Vn to Awl‘“_‘wn

2We will usually only describe functors on objects; the action of the functor on mor-
phisms should be clear.
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and the diagram:

ﬂvl,...'Vn

Avl,‘.,,v,. 3-;(1/1’. .ty Vn)

E(le--v,Tn)J lﬁ'(Thu-aTn)

Aw,,...Wo —m——>§' (W1, ..., Wy)

10 Wn
commutes.

Given a smpot‘.h _natural transformation p from § to § and given vec-
tor bundles «* : E* — M, i = 1,...,n, we obtain a fiber bundle mor-
phism ppi1_ pn : A — F(E',...,E") defined on an open subset A of
S(EY,...,E™) by setting:

Ay = Agi,. Ep,  (PEM,..EP)z = PEL,. EDs
for all z € M.
Proposition B.13. Given a positive integer n, smooth functors
T Yec™ — Yee, §F : Yec" =4 _ng_g, a smooth natural transformation P
from § to §', vector bundles ©* : E* — M endowed with connections V*,
i=1,...,n, then:

Sf(vl,“ ey Vn)v(pEl,,.,,E“ o S) = dpg;,“_,sg (3(.’5)) (3(V1! ey Vn)'vs)a
for allz € M, v € ToM and every smooth section s of F(E',...,E™) with
range contained in the domain of pp1 pn.

B.2. Example. Let n be a positive integer and consider the smooth functor
S : Yec" — Yec defined by:

S6(Vi,...,Vo)=Vi®d - @ V,.

Given vector bundles E', ..., E™ over a smooth manifold M then
S(E',...,E") is the Whitney sum of E', ..., E™. Let V* be a connection
on E*, i =1,...,n. For each i = 1,...,n, consider the smooth functor

P : Vec™ — Yec defined by:
PBW,...,Va) = Vi
We have a smooth natural transformation p' from & to P given by:
P Vi@ - ®Vy D (v1,...,9) — v; € Vi
Set V = &(V1,...,V"). Proposition B.13 implies that:
Volsty+ 1 8n) = (Vissy..., VEsa),
for all s, € '(EY), ..., s, e [(E"),v e TM.
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B.3. Example. Consider the smooth functors § : Vec? — Vec and & :
PYec? — Vec defined as follows; let Vi, Vo, Wi, Wy be objects of Lec and
let T} : Vi — Wi, Ty : Vo — W be isomorphisms. We set:

3(Vi,V2) = Lin(Vj,V2), F(T1,To)L=ThoLoTy},
&(V1,V2) = Lin(V5, V") &(T1,T2)R= (T7) ' o R*o Ty,
for L € Lin(V3, V3), R € Lin(V,", V}*). We have a natural transformation p
from ¥ to & defined by:
p : Lin(V, V) 3 t — t* € Lin(V5, V7).

Let E', E? be vector bundles over a smooth manifold M endowed with
connections V! and V? respectively. We denote by V both the connections
F(V1,V?) and &(V!, V?) on the bundles Lin(E', E?) and Lin((E?)*, (E')*)
respectively. Proposition B.13 tells us that, given a smooth section L of
Lin(E', E?) then:

| VoL* = (V,L)*,
for all v € TM.
B.4. Example. Consider the smooth functor § : Yec — Yec defined as

follows; let V', W be objects of Yec and let T : V — W be an isomorphism.
We set:

(V) =Bilin(V,V;V)aVaYV,
E(T)(B, Ul:UQ) = (T o B(T_l'v Tﬁl'):T(UlLT{v?)):
for every bilinear map B : V x V' — V and all v;,v2 € V. We have a

smooth natural transformation p from § to the identity functor J of Dec
defined by:

P Blhn(VvaV) dVevV>s (B)UI:U?) =% B('U],'UQ) € V.
Let E be a vector bundle over a smooth manifold M endowed with a con-
nection V. We will also denote by V the connection §(V) on Bilin(E, E; E).
Proposition B.13 tells us that, given a smooth section B of Bilin(E, E; E)
and smooth sections sq, s3 of F then:
Vau(B(s1,82)) = (VoB)(s1,82) + B(Vys1, s2) + B(s1, Vys2),
for all v € TM.
B.5. Example. Consider the smooth functor § : Lec — Yec defined as
follows; let V, W be objects of Dec and let T : V' — W be an isomorphism.
We set:
§(V) = Lin(V),
§TL=ToLoT™},
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for all L € Lin(V'). We have a smooth natural transformation p from § to
itself defined by:

p:Lin(V) D GL(V) 3 L+~ L™! € Lin(V).

Let E be a vector bundle over a smooth manifold M endowed with a
connection V. We will also denote by V the connection §F(V) on Lin(E).
Let L be a smooth section of Lin(E) such that L, is an isomorphism of
E., for all x € M. Proposition B.13 tells us that:

VoL ) = -LY(V, L)LY,
for all v € TM.
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