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Schrõdinger Equation in Phase Space, Irreducible 
Representations of the Heisenberg Group, and 

Deformation Quantization 

Maurice A. de Gosson 

Abstract. Schrõdinger equations in phase space are much discussed 
and questioned in quantum physics and chemistry. We show that the 
existence of such an equation is justified by constructing a an extended 
Weyl representation compatible with 8tone and von Neumann's theo­
rem. It turns out that the theory thus obtained is a variant of defor­
mation quantization. 

1. Introduction 
Just a few decades ago many physicists were still reluctant to accept the 

idea of a "quantum mechanics in phase space". The usual mantra was that 
Heisenberg's uncertainty principIe forbids us to view points in phase space 
as having any physical meaning in quantum mechanics (thus overlooking 
that mathematics is insensitive to such ontological considerations). Things 
have changed, luckily, and phase-space techniques are now widely used, es­
pecially in quantum optics and chemistry although the interpretations and 
methods differ, depending on tribal sensibilities; see [6, 17] for a discussion 
from a modem point of view. Roughly speaking, there are three ways of 
doing quantum mechanics in phase space: 

• One can use the Weyl- Wigner- Moyal- Groenewold formalism [3, 7, 
15], whose hallmark is the Wigner quasi-distribution; from a math­
ematical point of view this is just the usual Weyl pseudo-differential 
calculus whose interest comes from its symplectic covariance which 
links it to Hamiltonian mechanics; this theory is being widely used 
by physicists working in quantum optics because of its attractive 
symplectic covariance properties; 
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• One can use the beautiful and deep theory of deformation quantiza­
tion initiated by Bayen et alo [1], and based on Moyal's trailblazing 
work [9]. It is an autonomous full-blown rigorous theory, with deep 
ramifications in various other parts of mathematics; its hallmark is 
the star product (of which the Moyal, or Moyal-Groenewold, prod­
uct is an ancestor). Deformation quantization is essentially the 
unique associative Ii-deformation of the Poisson brackets of Hamil­
tonian mechanics and views classical mechanics as a limiting case 
of quantum mechanics, in the same way as Galilean relativity is 
viewed as a limiting case of special relativity; 

• Finally, one can introduce a Schrõdinger equation in phase spacej 
one of the most cited approaches is that of Torres-Vega and Fred­
erick [13, 14] who, using the so-called coherent state representation 
of wavefunctions, proposed a whole family of Schrõdinger equations 
in phase space, whose prototype is 

ili~~ = H (x + ilifx, -ilifx) w. (1) 

The work of Torres-Vega and Frederick has been much quoted and 
discussed by scientists working in quantum chemistry and physics; 
two recent contributions are for instance [2, 12]. 

The aim of this paper is to make obvious the following trinity: 

(i): We will show that the equation (1), and its symmetrized variant 

'1;8w _ H (x -I; a 2 -I; a) ,T, (2) zn7jt - 2" + Zn8P' 2 - Znax ~ 

actually correspond to the choice of an irreducible unitary repre­
sentations of the Heisenberg group in a closed subspace of L 2 (lR;,p) 
and is thus fully justified by the Stone-von Neumann theorem; 

(ii): This unitary representation in phase space corresponds to an 
extended Weyl calculus in which operators no longer act only on 
functions defined on configuration space (as is the case for any 
traditional pseudo-differential calculus), but on functions defined 
on phase space; this extended Weyl calculus enjoys alI the usual 
symplectic covariance properties when metaplectic operators are 
themselves extended to phase space; 

(iii): We will examine the relationship between equation (2) and de­
formation quantization; we will see that Torres-Vega and Freder­
ick's theory of Schrõdinger equation in phase-space is in fact a Dop­
pelgiinger of deformation quantization. (This fact does not seem 
to have been much noticed by authors working on the Schrõdinger 
equation in phase space; I have only found trace of it is the recent 
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preprint [2], although it is already in fact implicit in Torres-Vega 
and Frederick's paper[14]). 

Notations. We denote by a the canonical symplectic form on the phase 
space IR;n == IR~ x IR~: . 

(T(z,z') = px' - p'x if Z = (x,p), z' = (x'p') 

where x = (X}, .. . ,X}), P = (P}, ... ,Pn); we are using the "dotless dot-
product" notation xp = XIPl + ... + XnPn . The generalized gradients Ox 
and op are defined by Ox = (O/OXl, ... , %xn) and âp = (â/OPl, ... , â/âPn) . 

We denote by Sp(n) the real symplectic group; it consists of alI linear 
automorphisms S of IR;n such that a(Sz , Sz') = a(z, z') for all z, z'. 

S(IRm) is the Schwartz space of rapidly decreasing functions on IRm; its 
dual S' (IRm) is the space of tempered distributions. Functions on IR~ or IR; 
will be denoted by small Greek letters 1/;, f/y, ... while functions on IR;n will 
be denoted by capital Greek letters, e.g., W. 

For the notions of Weyl calculus that are being used here, see Folland [3] 
or [15]; we are using the notations and normalizations of Littlejohn [7]. For 
a review of deformation quantization as it was at the end of last millennium, 
see Sternheimer [ll]; this paper in addition contains an exhaustive list of 
referencestogether with numerous historical comments. 

2. Preliminary Considerations 
In deriving his equation Schrõdinger elaborated on Hamilton's optical­

mechanical analogy and was led to integrate the Poincaré-Cartan form 

aR =pdx - Hdt (3) 

in order to obtain a solution of Hamilton-Jacobi's equation for H (see [5]). 
This allowed him, by an inductive argument, to postulate what we call 
today the time-independent Schrõdinger equation satisfied by a stationary 
matter-wave 1/;0; later he introduced the wave function 1/;(x, t) = e-iEt/ 1i1/;o 
which is a solution of the time-dependent equation 

ifi~~ = H (x, -iMx ) 1/;. (4) 

Compared to the Hamilton equations 

:i; = âpH(x,p) , P = -âxH(x,p) 

from classical mechanics, Schrõdinger's equation introduces a deep asym­
metry: the variable p has disappeared altogether and has been replaced by 
the operator - iM/âx. This asymmetry comes from Schrõdinger's honest 
and totally justifiable use of the action form (3), where the variables p and 
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x play asymmetric roles. Let us now pause and ask ourselves where the 
interest of the action form (3) comes from. Well, it mainly comes from the 
fact that it is a relative integral invariant, that is , its exterior derivative 
daH is an absolute integral invariant. It is precisely this property that 
allows one to integrate Hamilton- Jacobi's equation in terms of aH. Now, 

daH = dp 1\ dx - Hdt 

has aH as a primitive - among infinitely many other! For instance, every 
differential form 

a1-I = Àpdx - (1 - À)xdp - H dt 

obviously satisfies 
da1-I = dp 1\ dx - H dt 

and is hence also a relative integral invariant. Making the particular choice 
À = ~ we will denote by /3H the corresponding "symmetrized action form": 

1 1 
/3H = '2 (pdx - xdp) - Hdt = '2O'( z, dz ) - Hdt. 

We claim (somewhat speculatively ... ) that had Schrõdinger used /3H in­
stead of aH he could very well have landed, not with the equation (4), but 
rather with the phase-space equation (2), which could hence have led him 
to deformation quantization's ancestor, Moyal's theory! 

Let us justify our claims from a rigorous mathematical point of view. 

3. Phase-Space Representation of Hn 
Recall that one of the modem ways to justify the Schrõdinger quanti­

zation rules Xj --t Xj , Pj --t -in(ô/ôxj) is to construct the Schrõdinger 
representation of the Heisenberg group Hn , that is ~;n X ~t equipped with 
the group law 

(z , t) . (z', t) = (z + z', t + t' + ~a(z, z')) . (5) 

One proceeds as follows: consider the "translation Hamiltonian" H zo = 
a(z , zo); the flow it determines are the translations T(tzo) : z 1---+ z + tzo; 
they act on functions defined on ~;n by the rule 

T(tZO)Wo(z) = wo(z - t zo). 

In (traditional) quantum mechanics Hilbert spaces and phases play a cru­
cial role; one "quantizes" the operators T(tZO) by letting them act on 
'l/Jo E L2(~~) via the Heisenberg- Weyl operators T(zo) defined by 

T(tzo)'l/Jo(x) = ekcp(z,t)T(tzo)'l/Jo(x); 
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here i.p(Z, t) is the increase in action when one goes straight from the point 
z - tzo to the point z, that is 

10 t2 

i.p(Z, t) = pdx - Hzodt = poxt - 2"PoXO; 
-t 

thus 
T(tzo)'lj;o(x) = e*(poxt-%poxo)'lj;o(X - txo). 

The Schrodinger representation of Hn in L2(lR~) is the mapping 

TSch : Hn ---> U(L2(lR~)) 

(U(L2(lR~)) the unitary operators on L2(lR~)) defined by 
it ~ 

TSch(ZO, to)'lj;o(x) = e)\ °T(zo)'lj;o(x); 

(6) 

(7) 

(8) 

one proves that TSch is a unitary and irreducible representation; a famous 
theorem of Stone and von Neumann (see [3, 16] for a proof) asserts that 
it is, up to unitary equivalences, the only irreducible representation of Hn 
in L2(lR~). But this theorem does not prevent us from constructing non­
trivial irreducible representations of Hn in other Hilbert spaces; we will 
come back to this essential point in a moment, but let us first note that 
Schrodinger's equation for the displacement Hamiltonian Hzo = O"(z, zo), 
and hence the quantum rules 

x ---> x p ---> -inax (9) 

now follow from formula (7): an immediate calculation shows that the 
function 'lj;(x, t) = T(tzo)'lj;o(x) is a solution of 

in ~~ = Hzo (x, - in8x) 'lj; , 'lj;(x, O) = 'lj;o(x). 

Let us quantize the translation operators T(tZO) in a different way. We 
redefine T(tzo) by letting it act, not on L2(lR~), but on L2(IR;n) , by the 
formula 

Tph(tZO)wo(z) = e*<P'(z,t)T(tzo)Wo(z) 

(the subscript "ph" stands for "phase space"), and replacing the phase (6) 
by integrating, not the Poincaré-Cartan form aHzo but its symmetrized 
variant 

1 
f3Hzo = 2 (pdx - xdp) - Hzodt. 

This yields after a trivial calculation 

i.p'(z,t) = -~Hzo(Z)t = -~O"(z,zo)t. (10) 

Summarizing, we have defined 

Tph(tzO)Wo(z) = e-1r;CT(Z ,ZO)t wo(z - tzo). (11) 
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What partial difIerential equation does the function 'li = Tph(tzo)wo sat­
isfy? Performing a few calculations one checks that it satisfies the multi­
dimensional analogue of the phase-space Schrodinger equation (1) of the 
introduction, namely 

(12) 

We are going to prove the following: 

(A): The operators Tph(tzO) correspond to a new irreducible unitary 
representation of the Heisenberg group Hn on a closed subspace of 
L2(lR;n) (which is unitarily equivalent to the Schrodinger represen­
tation via Stone-von Neumann's theorem). 

(B): The phase-space Schrodinger equation (12) is closely related 
to deformation quantization, in fact to an extension of the usual 
Weyl calculus on L2(lR~) to L2(lR;n), for which the operators 
H (~ + ihâp , ~ - ihâx ) are perfectly well-defined. 

....... 
4. The lrreducible U nitary Representation Tph 

We define the phase-space representation of Hn in analogy with (8) by 

(13) 

Clearly Tph(ZO, to) is a unitary operator; moreover a straightforward calcu­
lation shows that 

~ ~ i ( )~ 1 
Tph(ZO, tO)Tph(Zl, tl) = e 2ilu ZQ,Zl Tph(ZO + Zl, to + tl + '2a(zo, zd) 

so that Tph is indeed a representation of Hn on some subspace of L2(lR;n). 
We are going to show that this representation is unitarily equivalent to the 
SchrOdinger representation, and hence irreducible. 

Let cf> E S(lR~) be normalized to unity: 

(14) 

To that function cf> we associate the operator V<I> : L2(lR~) --t L2(lR;n) 
defined by 

V<I>1/;(Z) = ('r2/it/2W(1/;,cf»(~z) 

where W( 1/;,4») is the Wigner- Moyal function (Folland [3]): 

W(1/;, cf»(x,p) = (2;/it ! e-*PY1/;(x + h)4)(x - h)rf1'y· 
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It turns out that Vq, is an extension of the "coherent-state representation" 
to which it reduces,up to the factor exp( -ipxjn) if one takes for <p the real 
Gaussian 

<Pfi(X) = (7r1fir/4 e-Z\lxI2. 

In fact, a straightforward calculation shows that 

Vq,'Ij;(z) = e-:ftPxUq,'Ij;(z) 

where the operator Uq, is defined by 

(15) 

(16) 

Uq,'Ij;(z) = (2;'fir/2 J eíp(x-x')([;(x - x')'Ij;(x')~x'. (17) 

Proposition 1. (i) The tmnsform Vq, is an isometry: the Parseval formula 

(18) 

holds for all 'Ij;, 'Ij;' E S(lR~); (ii) Vq, extends into an isometric opemtor 
L2(lR~) ---4 L2(lR;n) and 

V;Vq, = I on L2(lR~); (19) 

(iii) The mnge 1íq, ofVq, is closed in L2(lR;n) (and is hence a Hilbert space), 
and P = Vq, V; is the orthogonal projection on the Hilbert space 1íq,. 

Proof. The operator Uq, satisfies the listed properties (see for instance [10], 

Chapter 2, §2); since Vq,'Ij;(z) = e-:ftPxUq, we have 

(Vq, 'l/J, Vq,'Ij;')L2(IR~n) = (Uq,'Ij;, Uq,'Ij;')L2(IR;n) 

and the proposition follows. o 
The irreducibility of the representation Tph is a consequence of the result 

above: 

Corollary 2. Tph is unitarily equivalent to the Schrõdinger representation, 
and hence irreducible, and we have 

(20) 

Proof. It suffices to show that the operators Tph(ZO) = Tph(ZO, O) and 
TSch(ZO) = Tsch(zo,O) make the following diagram commutative: 

L2(lR~) 

TSch 1 
L2(lR~) 

~ L2(l~;n) 
1 Tph 

~ L2(lR;n). 



390 

Now, 

Maurice A. de Gosson 

Tph(zo)Vt/>'IjJ(z) = e--ku(z,ZO)e--kpxUt/>'IjJ(z - zo) 

_ ( 1 )n/2 _i(Pox_1poxo) 
-27i1i e li 2 X 

J ek (p-po)(x-xo-x') 1>(x - Xo - x/)'IjJ(x/)d"x/ 

and setting x" = x/ + Xo in the integral this is 

Tph(ZO)Vt/>'IjJ(z) = (2;/J n / 2 e-k(pox-~poxo)x 

J ek(P-po)(x-x")1>(x - XI)'IjJ(X" - xo)d"x/ 

hence 

Tph(zo)(Vt/>'IjJ)(z) = Vt/>(TSch(ZO)'IjJ)(z) 

which was to be proven. o 
Remark 3. The Hilbert space Ht/> is smaller than L2(IR;n); for instance 
if we chose for 1> the Gaussian (15) then one proves [lOJ that the range 
of the transform Ut/> dejined by (11) consists of all W E L2(IR;n) such that 
exp(p2 j2n) is anti-analytic. lt follows that Ht/>o which is the range of Vt/> = 
exp( -ipx j2n)U </> consists of all W E L2 (lR;n) for which the following (anti-) 
Cauchy-Riemann conditions hold: 

8 11 12 
-8 (e2i\z W(z)) =0 , l$j$n. 

Zj 

Moreover, a few calculations, using for instance (16) and (17) show that 
we have 

(~+ inap ) V</>'IjJ = V</>(x'IjJ) , (~- inax) V</>'IjJ = Vt/>(-inax'IjJ); (21) 

the transform V</> thus takes the usual quantization rules (9) to the phase­
space quantization rules 

x "fiE) P·na x ~ 2" + Z p , x ~ 2 - Z X· 

Remark 4. lf one uses the transformation U</> instead of V</> and chooses 
for 1> the normalized Gaussian 1>/i given by (15) one would get instead the 
roles 

x ~ x + inax , x ~ -inax 

corresponding to the Torres- Vega and Prederick equation (1). 
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5. Extended Weyl Calculus 
In standard Weyl calculus one associates to a "symbol" a having some 

some suitable growth properties for p ~ 00 class a pseudo-differential op-
erator 

Â = aW : S(IR~) ---7 S(IR~) 
defined by the kernel 

K Â(x, y) = (2hr/2 J e*p(x'Y)a(~(x + y),p)dN p. 

One proves that (see e.g. [3, 15]) 

~ ( 1 )n J ~ 2 A"p(x) = 27rn ã(zo)Tsch(zo)"p(x)d nzo (22) 

for "p E S(IR~) (the integral being interpreted as an "oscillatory integral", 
. In formula (22) ã (the "twisted" Weyl symbol) is the symplectic Fourier­
transform of a: 

ã(z) = Fua(z) = (2hr J e-ku(z,ZI)a(zl)d2nzl (23) 

and TSch(ZO) = TSch(ZO, O) is the Heisenberg-Weyl operator (7). 
The discussion above suggests that we might now be able to make Â 

to act, not only on functions of x, but also on functions W E S(IR~n) by 
defining 

~ ( 1 )n J ~ 2 Aschw(z) = 27r1i ã(zo)TSch(ZO)w(z)d nzo (24) 

where we have set 

TSch(ZO)W(z) = e*(POx-~POXO)w(z - zo). 

It turns out that it is better for our purposes to use instead the operator 

ÂphW(z) = C;1ir J ã(zo)Tph(ZO)w(z)d2nzo (25) 

obtained by replacing TSch by Tph in (24); somewhat more explicitly: 

Âph w(z) = (2hr J e-fr;u(z,zo) Fua(zo)W(z - zo)d2nzo. (26) 

As expected, the operators Xph and Pph corresponding to the symbols 
x and pare just 

~ x. ~ p . 
X ph = "2 + zliâp and Pph = "2 - zliôx 

and we will therefore use the notation 

Âph = Â(~ + iliôp, ~ - iliôx ); 
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observe that Xph and Pph obey the usual canonical relations 

[xj,ph,A,Ph] = iMjk . 

In a recent paper [4] we have shown, following previous work of Mehlig 
and Wilkinson [8] that the metaplectic group M p( n) is generated by the 
operators 

SCv) = (2!h) n iV vi det(S - 1)1 j e-fr;<TCSz,z)T((S - 1)z)d2n z (27) 
where S E Sp(n), det(S - 1) =I- O, and 11 is, modulo 2, the Conley-Zehnder 
index of a path joining the identity to S in Sp(n); the natural projection 
7r : M p( n) ---t Sp( n) is defined as the unique epimorphism satisfying 
7r(SCv)) = S. Using the intertwining relation (20) Tph(ZO)V,p = V,pTSch(ZO) 

we can define unitary operators S~~ : L2(lR;n) ---t L2(lR;n) by the formula 

S~ = V,pSCV)V; . (28) 

An explicit calculation yields 

S~~ = (2!h)n i VVl det(S-1)lj e-!<T(Sz,z)Tph((S-1)z)d2nz (29) 

so that S~';/ is independent of the choice of <jJ. The group Mpph(n) gener­
ated by these operators is trivially isomorphic to the usual group M p( n), 
and the usual "metaplectic covariance formula" for Weyl-Heisenberg oper­
ators 

(30) 

valid for every SE Mp(n) with projection S E Sp(n) extends in a natural 
way to phase-space Weyl operators: 

Proposition 5. For every Sph E Mpph(n) we have 

(31) 

Proof. It suffices to prove (31) when Sph = S~~ since the metaplectic 

operators S~~ generate Mpph(n). Using successively (28) and (20) we 
have 

~CV) ~ ~Cv) -1 ~ ~(v) ~ -1 
Sph Tph(z) = V,pS V,p Tph(Z) = V,pS Tsch V,p 

that is, by (30), and again (20), 
~(v) ~ ~ ~(v) -1 ~ ~Cv) -1 
Sph Tph(z) = V,pTSch(SZ)S V,p = Tph(Sz)V,pS V,p 

which proves (31). D 
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The metaplectic eovarianee for Weyl operators on phase spaee follows: 
~ ~ ~ ~ 1 

Corollary 6. lf Aph has symbol a then SphAphS;h is the phase-space Weyl 
opemtor with symbol a o S-l . 

Proof. Using (25) we have, using the faet that det S = 1, 

~hÂphS;hl = (2;1it J ã(Z)SphTph(Z)S;h1d2nz 

= (2;1it J ã(z)Tph (Sz)d2n z 

= (2;1it j ã(S-lz)Tph(Z)d2nz; 

sinee by definition (23) of ã 

ã(S- l z) = (zht j e-ka(S-lz,zl)a(z')d2nz' 

= (zhr j e-ka(z,Sz')a(z')d2nz' 

= (2;1ir je-ka(Z,SZI)a(S-lz')d2nz, 

this proves our claim. o 
5.1. Relation With Deformation Quantization. It turns out that for­
mula (26) is the fundamentallink between the theory sketehed above with 
deformation quantization. Reeall that if Â = aW and Ê = bW are the 
Weyl operators with symbols a and b, respeetively, then the twisted sym­
boI c = FaC of the eompose ê = ÂÊ is given by the formula 

c(z) = (2ht J e-~a(z,z/)a(z - z')b(z')d2n z'; 

sinee F<7 is an involution, we have c = FaC and one verifies that 

c(z) = (~)2n j e~<7(zl,zll)a(z + ~z')b(z _ ~z")d2nz' d2n z"; 

using expansions in Taylor series and repeated integrations bv parts this 
t-~ f---+ 

ean be rewritten in terms of the "Janus operator" oxop - opox as 

c(z) = a(z) exp [~(ã;;;a; - a;a:] b(z) = a*b(z) 

where * is the star-produet. Thus formula (26) says that our extended 
Weyl ealculus ean be expressed in terms of the star-produet in the following 
very simple way: 

(32) 
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Noting that the symplectic Fourier transform satisfies the commutation 
relations 

Fa o (~ + iMp) = (x + ~âp) oFa 

Fa o (~ - iMx ) = (p - ~âx) o Fa 

and that F; = I we have formally 

FaÂ(~ + iMp, ~ - iMx ) = Â(x + ~âp,p - ~âx ) 
so that we can rewrite (32) as 

_ ~ i li ili 
a*W - A(x + 2âp,P - 2âx)W. (33) 

This formula is widely used in physics (see Zachos et alo [17] and the 
numerous references therein) and suggests, as it is intended to do, that one 
passes from our extended Weyl calculus to deformation quantization, and 
vice-versa, by symplectic Fourier transformo 

6. Discussion and Concluding Remarks 
There has been some debate among scientists about the relevance or 

physical significance of a Schrõdinger equation in phase space. We have 
shown that the consideration of such an equation actually is consistent with 
Stone and von Neumann's theorem on the irreducible representations of the 
Heisenberg group, and that it is deformation quantizatian in disguise. One 
should however not dismiss it toa easily as being an uninteresting "sauped 
down" version of a "better" theory. Many quantum physicists - and perhaps 
even more quantum chemists- are "culturally" doser to the Schrõdinger 
formalism; the solutions 'li of the equation 

âw ~ Ii 'Ii 
iti7jt = H(x + ~âp , p - ~âx)w 

are interesting objects in themselves, since they contain information about 
the wavefunction 'Ij;: ifw = V,p'lj; a straightforward calculation shows that 

J w(z)crp = (27rIi)n/2'1j;(!x)~ 

J w(z)crx = (27rIi)n /2 F'Ij;(!p)F</J(!p). 

so that both 'Ij; and its Fourier transform F'Ij; are immediately obtained from 
'li if </J(x) =1= O for alI x. It thus appears that 'li in a sense plays the role of 
a "joint probability amplitude", as opposed to the Wigner transform W'Ij; 
which is not a joint probability density since it can take negative values. 



Schrôdinger Equation in Phase Space 395 

Acknowledgement 
This work has been supported by the FAPESP grant 2005/51766-7 dur­

ing the author's stay at the University of São Paulo. I would like to thank 
Professor Paolo Piccione for his generous invitation and for having provided 
a more than congenial environment. 

References 
[1] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, and D. Sternheimer. Deforma­

tion Theory and Quantization. L Deformation of Symplectic Structures. Annals of 
Physics 111, 6- 110, 1978; II Physical Applications 110, 111-151, 1978. 

[2] D. Chruscinski and K. Mtlodawski. Wigner function and Schrodinger equation in 
phase space representation. Preprint, arXiv: quant-ph/ 0501163 v1, 2005. 

[3] G. B. Folland. Harmonic Analysis in Phase space. Annals of Mathematics studies, 
Princeton University Press, Princeton, N.J., 1989. 

[4] M. de Gosson. On the Weyl Representation of Metaplectic Operators. To appear in 
Lett. Math. Phys. , 2005 

[5] M. Jammer. The Conceptual Development of Quantum Mechanics, Inst . Series in 
Pure and Appl. Physics (McGraw-Hill Book Company, 1966). 

[6] Y. S. Kim and M. E. Noz. Phase space Picture of Quantum Mechanics (Group 
Theoretical Approach) World Seientific, Singapore, 1991. 

[7] R . G. Littlejohn. The semiclassical evolution of wave packets. Physics Reports 
138( 4- 5):193- 291, 1986. 

[8] B. Mehlig and M. Wilkinson. Semiclassical trace formulae using coherent states. 
Ann. Phys. 18(10) , 6- 7, 541- 555, 2001. 

[9] J. E . Moyal. Quantum mechanics as a statistical theory. Prac. Camb. Phil. Soe. 
45:99-124, 1947. 

[10] V. Nazaikiinskii, B.-W. Schulze, and B. Sternin. Quantization Methods in Differen­
tial Equations. Differential and Integral Equations and Their Applications, Taylor 
& Franeis, 2002. 

[11] D. Sternheimer. Deformation Quantization: Twenty Years After. In Parlicles, Fields 
and Gravitation, editor J. Rembielenski, Proceedings of a conference held in Lodz, 
Poland, 15-19 April1998. AIP Conference Proceedings, Vol. 453, ]998, p.107. 

[12] Qian Shu Li, Gong Min Wei, and Li Qiang Lü. Relationship between the Wigner 
function and the propability density function in quantum phase space representa­
tion. Phys. Rev. A 70, 022105, 2004. 

[13] G Torres-Vega and J H Frederick, J. Chem. Phys. 93(12) 8862- 8874, 1990. 
[14] G Torres-Vega and J H Frederick, J. Chem. Phys. 98(4) 3103- 3120, 1993. 
[15] M. W. Wong. Weyl Transforms. Springer, 1998. 
[16] N. Wallach. Lie Graups: History, Prontiers and Applications, 5. Symplectic Geom­

etry and Fourier Analysis, Math Sei Press, Brookline, MA, 1977. 
[17] C. K. Zachos, D. B. Fairlie, and T . L. Curtright. Quantum Mechanics in Phase 

Space. World Seientific, Singapore, 2005. 

UNIVERSITAT POTSDAM, INST. F. MATHEMATIK, AM NEUEN PALAIS 10, D-14415 
POTSDAM 

Current address: Universidade de São Paulo, Departamento de Matemática, 
CEP 05508-900 São Paulo 

E-mail address: maurice. degossonillgmail. com 




