Impressão 3D na medicina legal e resolução de crimes: revisão integrativa da literatura

Autores

DOI:

https://doi.org/10.11606/issn.1679-9836.v100i1p62-69

Palavras-chave:

Ciência forense, Impressora 3D, Perícia criminal, Prototipagem rápida

Resumo

A tecnologia de impressão 3D oportunizou explorações em novas áreas biológicas, como na Medicina Legal, auxiliando na resolução de crimes. Considerando o uso dessa tecnologia na Perícia Criminal, este trabalho consiste em uma revisão literária que visa relatar a contribuição da impressão 3D na solução de atos criminosos. Foram relatadas as principais impressões 3D utilizadas, suas vantagens e desvantagens. Como adjuvante, foram apresentadas ainda as técnicas moleculares em impressões 3D que podem auxiliar na resolução de crimes. A análise dos dados revelou que o uso da tecnologia de impressão 3D colaborou nos laudos periciais que elucidaram investigações conduzidas na área criminal. A tecnologia apresentou-se como opção por reduzir custos, prazos e impactos invasivos sobre o corpo em contextos forenses. Concluiu-se que é preciso planejar a construção do objeto levando em conta restrições técnicas das impressoras 3D, principalmente o processo de digitalização. Além disso, determinar qual método computacional combinar para se obter os melhores resultados na Medicina Legal é passo crítico no processo de impressão.

Downloads

Os dados de download ainda não estão disponíveis.

Biografia do Autor

  • Brizza Fernandes dos Santos Vargas, Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais - Campus Barbacena

    Bióloga pelo Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais - Campus Barbacena, Minas Gerais, Brasil. 

  • Melina Almeida Coutinho, Universidade Estadual de Santa Cruz - UESC

    Acadêmica do Curso de Medicina da Universidade Estadual de Santa Cruz - UESC - Ilhéus, Bahia, Brasil. 

  • Flaviane Silva Coutinho, Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais - Campus Barbacena

    Professora substituta do Departamento de Ciências Biológica do Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais - Campus Barbacena, Minas Gerais, Brasil. Doutora em Bioquímica Aplicada pela Universidade Federal de Viçosa. 

Referências

Santos AE. As principais linhas da biologia forense e como auxiliam na resolução de crimes. Rev Bras Criminalística. 2018;7:12-20. doi: https://doi.org/10.15260/rbc.v7i3.190.

Goodman M. Future crimes: tudo está conectado, todos somos vulneráveis e o que podemos fazer sobre isso. São Paulo: HSM; 2015.

George E, Liacouras P, Rybicki FJ, Mitsouras D. Measuring and establishing the accuracy and reproducibility of 3D printed medical models. Radiographics. 2017;37:1424-50. doi: https://doi.org/10.1148/rg.2017160165.

Urbanová P, Jurda M, Ross AH, Splíchalová I. The virtual approach to the assessment of skeletal injuries in human skeletal remains of forensic importance. J Forensic Legal Med. 2017;49:59-75. doi: https://doi.org/10.1016/j.jflm.2017.05.015.

Gibson I, Rosen DW, Stucker B. Additive manufacturing technologies– rapid prototyping to direct digital manufacturing. New York: Springer; 2010.

Berman B. 3-D printing: The new industrial revolution. Business Horizons. 2012;55:155-62. doi: https://doi.org/10.1016/j.bushor.2011.11.003.

Mankovich NJ, Cheeeseman AM, Stoker NG. The display of three-dimensional anatomy with stereolithographic models. J Digital Imaging. 1990;3:200-03. doi: https://doi.org/10.1007/BF03167610.

Lauridsen H, Hansen K, Norgard MO, Wang T, Pedersen M. From tissue to silicon to plastic: three-dimensional printing in comparative anatomy and physiology. Royal Soc Open Sci. 2016;3:01-15. doi: https://doi.org/10.1098/rsos.150643.

Zur Nedden D, Knapp R, Wicke K, Judmaier W, Murphy WA, Seidler H, Platzer W. Skull of a 5300-year-old mummy. Reproduction and investigation with CT-guided stereolithography. Radiology. 1994;193:269-72. doi: https://doi.org/10.1148/radiology.193.1.8090905.

Recheis W, Weber GW, Schaefer K, Horst S, Knapp R, Nedden DZ. Virtual reality and anthropology. Eur J Radiol. 1999;31:88-96. doi: https://doi.org/10.1016/s0720-048x(99)00089-3.

Pérès F, Taha F, Lumley MA, Cabanis EA. Digital modelling and stereolithographic production of a Homo erectus skull. Rapid Prototyping J. 2004;10:247-54. doi: https://doi.org/10.1108/13552540410551379.

Adams JW, Paxton L, Burlak K, Dawes K, Quayle MR, Mcmenamin PG. 3D printed reproductions of orbital dissections: a novel mode of visualising anatomy for trainees in ophthalmology or optometry. Brit J Ophthalmol. 2015;99(9). doi: https://doi.org/10.1136/bjophthalmol-2014-306189.

Azuma M, Ishibashi-Kanno N, Ito T, Hasegawa S, Adachi S, Sekido M, Yanagawa T, Uchida F, Yamagata K, Sasaki K, Tabuchi K, Bukawa K. Mandibular reconstruction using plates prebent to fit rapid prototyping 3-dimensional printing models ameliorates contour deformity. Head Face Med. 2014;10:01-10. doi: https://doi.org/10.1186/1746-160X-10-45.

Moraes PH, Olate S, Assis AF, Cantín M, Santos EC, Silva LO, Silva FO. Anatomical reproducibility through 3D printing in cranio-maxillo-facial defects. Int J Morphol. 2015;33:826-30. doi: https://doi.org/10.4067/S0717-95022015000300003.

Elgalal M, Kozakiewicz M, Olszycki M, Walkowiak B, Stefanczyk L. Custom implant design and surgical pre-planning using rapid prototyping and anatomical models for the repair of orbital floor fractures. Eur Soc Radiol. 2009;01-17. https://dx.doi.org/10.1594/ecr2009/C-292.

Kim MS, Hansgen AR, Wink O, Quaife RA, Carroll JD. Rapid prototyping a new tool in understanding and treating structural heart disease. Circulation. 2008;117:2388-94. doi: https://doi.org/10.1161/CIRCULATIONAHA.107.740977.

Urbanová P, Vojtisek T, Frishons J, Sandor O, Jurda M, Krajsa J. Applying 3D prints to reconstructing postmortem craniofacial features damaged by devastating head injuries. Legal Med. 2018;33:48-52. doi: https://doi.org/10.1016/j.legalmed.2018.05.005.

Woźniak K, Woźniak ER, Moskala A, Pohl J, Latacz K, Dybala B. Weapon identification using antemortem computed tomography with virtual 3D and rapid prototype modeling-A report in a case of blunt force head injury. Forensic Sci Int. 2012;222:29-32. doi: https://doi.org/10.1016/j.forsciint.2012.06.012.

Baier W, Warnett JM, Williams MA, Payne M. Introducing 3D printed models as demonstrative Evidence at Criminal Trials. J Forensic Sci. 2017;63. doi: https://doi.org/10.1111/1556-4029.13700.

Edwards J, Rogers R. The accuracy and applicability of 3D modeling and printing blunt force cranial injuries. J Forensic Sci. 2017;63:683-691. doi: https://doi.org/10.1111/1556-4029.13627.

Dedouit F, Costagliola R, Joffre F, No T, Otal P, Rougé D. Virtual anthropology and forensic identification: report of one case. Forensic Sci Int. 2007;173:182-7. doi: https://doi.org/10.1016/j.forsciint.2007.01.002.

Brough AL, Rutty GN, Black S, Morgan B. Post-mortem computed tomography and 3D imaging: anthropological applications for juvenile remains. Forensic Sci Med Pathol. 2012;8:270-9. doi: https://doi.org/10.1007/s12024-012-9344-z.

Liscio E. Forensic uses of 3D printing. Forensic Magazine. 2013 [cited 2019 Oct 19]. Available from: https://www.forensicmag.com/article/2013/06/forensic-uses-3d-printing.

Errickson D, Thompson TJU, Rankin B. The application of 3D visualization of osteological trauma for the courtroom: a critical review. J Forensic Radiol Imaging. 2014;2:132-7. doi: https://doi.org/10.1016/j.jofri.2014.04.002.

Killgrove K. How 3D printed bones are revolutionizing forensics and bioarchaeology. Forbes [cited 2019 Oct 19]. Available from: https://www.forbes.com/sites/kristinakillgrove/2015/05/28/how-3d-printed-bonesare- revolutionizing-forensics-and-bioarchaeology/#2dbaa3861a39.

Thali M, Vock P, Kneubuehl BP, Dirnhofer R, Yen K, et al. Image-guided virtual autopsy findings of gunshot victims performed with multi-slice computed tomography (MSCT) and magnetic resonance imaging (MRI) and subsequent correlation between radiology and autopsy findings. Forensic Sci Int. 2004;138:08-16. doi: https://doi.org/10.1016/S0379-0738(03)00225-1.

Jackowski C, Thali M, Allmen GV, Dirnhofer R, Sonnenschein M, et al. Virtopsy: Postmortem minimally invasive angiography using cross section techniques-implementation and preliminary results. J Forensic Sci. 2005;50:1175-86. doi: https://doi.org/10.1520/JFS2005023.

Dirnhofer R, Vock P, Thali M, Jackowski C, Potter K. Virtopsy: minimally invasive, imaging-guided virtual autopsy. Radiographics. 2006;26:1305-33. doi: https://doi.org/10.1148/rg.265065001.

Thali M, Dirnhofer R, Vock P. The virtopsy approach: 3D optical and radiological scanning and reconstruction in forensic medicine. Boca Raton, Fl.: CRC Press; 2009.

Mantini S, Ripani M. Modern morphometry: new perspectives in physical anthropology. New Biotechnol. 2009;25:325-30. doi: https://doi.org/10.1016/j.nbt.2009.03.009.

Scott C. Could 3D printed fingerprints help criminals break through security? MSU researchers demonstrate It’s possible. 3DPRINT; 2016 [cited 2019 October 18]. Available from: https://3dprint.com/153234/3d-printed-fingerprints-security/.

Lorkiewicz-Muszynska D, Kociemba W, Zaba C, Koralewskakordel M, Abreu-Glowacka M, Przystanska A, Labecka M. The conclusive role of postmortem computed tomography (CT) of the skull and computer-assisted superimposition in identification of an unknown body. Int J Legal Med. 2012;127:653-60. doi: https://doi.org/10.1007/s00414-012-0805-4.

Schuh P, Scheurer E, Fritz K, Pavlic M, Hassler EM, Yen K, Rienmueller R. Can clinical CT data improve forensic reconstruction? Int J Legal Med. 2013;3:631-8. doi: https://doi.org/10.1007/s00414-013-0830-y.

Bakker B, Bakker HM, Soerdjbalie-Maikoe V. The use of 3D-CT in weapon caused impression fractures of the skull, from a forensic radiological point of view. J Forensic Radiol Imaging. 2013;176-9. doi: https://doi.org/10.1016/j.jofri.2013.07.005.

Kettner M, Schmidt P, Potente S, Ramsthaler F, Chrodt M. Reverse engineering-rapid prototyping of the skull in forensic trauma analysis. J Forensic Sci. 2011;56:1015-7. doi: https://doi.org/10.1111/j.1556-4029.2011.01764.x.

Thimmesch D. 3D printing plays critical role in solving decades-old cold cases in Florida. 3DPRINT; 2015 [cited 2019 Oct 18]. Available from: https://3dprint.com/102606/3dprint-solving-cold-cases/.

Carew R, Errickson D. Imaging in forensic science: five years on. J Forensic Radiol Imaging. 2019;16:24-33. doi: https://doi.org/10.1016/j.jofri.2019.01.002.

Ebert LC, Thali M, Ross S. Getting in touch-3D printing in forensic imaging. Forensic Sci Int. 2011;211:e1-e6. doi: https://doi.org/10.1016/j.forsciint.2011.04.022.

Jarvis PM. A Primer on the use of dangerous trial exhibits. Am J Trial Advocacy. 2014;37:519-32. Available from: https://nsuworks.nova.edu/cgi/viewcontent.cgi?article=1232&context=law_facarticles.

Chan K, Hardick J, Wong KY, Wilson SA, Wong SSS, Coen M, et al. Low-cost 3D printers enable high-quality and automated sample preparation and molecular detection. PLoS One. 2016;11. doi: https://doi.org/10.1371/journal.pone.0158502.

Byagathvalli G, Pomerantz A, Sinha S, Standeven J, Bhamla MS. A 3D-printed hand-powered centrifuge for molecular biology. PLoS Biol. 2019;17(5):e3000251. doi: https://doi.org/10.1371/journal.pbio.3000251.

Parker J, Devey D, Papadopulos A, Helmstetter A, Wilkinson T. Field-based species identification of closely-related plants using real-time nanopore sequencing. Scient Rep. 2017;7:01-08. doi: https://doi.org/10.1038/s41598-017-08461-5.

Pomerantz A, Arteaga A, Pichardo F, Amoros BC, Prost S, Penafiel N, et al. Realtime DNA barcoding in a rainforest using nanopore sequencing: opportunities for rapid biodiversity assessments and local capacity building. GigaScience. 2018;7. doi: https://doi.org/10.1093/gigascience/giy033.

Quick J, Loman NJ, Duraffour S, Simpson JT, Severi E, Cowley L, Bore JA, et al. Real-time, portable genome sequencing for Ebola surveillance. Nature. 2016;530:228-32. doi: https://doi.org/10.1038/nature16996.

Edwards A, Debbonaire AR, Nicholls SM, Rassner SME, Sattler B, Cook JM, et al. In-field metagenome and 16S rRNA gene amplicon nanopore sequencing robustly characterize glacier microbiota. BioRxiv. 2019;073965. doi: https://doi.org/10.1101/073965.

Johnson SS, Zaikova E, Goerlitz DS, Bai Y, Tighe SW. Real-time DNA sequencing in the Antarctic Dry Valleys using the Oxford Nanopore sequencer. J Biomol Techn. 2017;8:1-7. doi: https://doi.org/10.7171/jbt.17-2801-009.

Ventola CL. Medical applications for 3D printing: current and projected uses. P&T. 2014;39:704-11. doi: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4189697/.

Publicado

2021-03-17

Edição

Seção

Artigos de Revisão/Review Articles

Como Citar

Vargas, B. F. dos S., Coutinho, M. A., & Coutinho, F. S. (2021). Impressão 3D na medicina legal e resolução de crimes: revisão integrativa da literatura. Revista De Medicina, 100(1), 62-69. https://doi.org/10.11606/issn.1679-9836.v100i1p62-69