Technological innovations in the post-pandemic period: an analysis of the graphene’s antimicrobial property

Authors

DOI:

https://doi.org/10.11606/issn.1679-9836.v100i5p486-493

Keywords:

Graphene, Nanocomposite, COVID-19, Anti-Bacterial Agents, Personal Protective Equipment,, Biosensing Techniques, Public Health, Technological Innovations

Abstract

Nanomaterials are emerging as possible solutions to contemporary public health challenges. Among these materials, graphene has received attention from the scientific community due to its properties and particularities, such as lightness, rigidity, thermal and electrical conductivity and, mainly, its antimicrobial potential. In the context of medicine, recent research addresses the application of this material in personal protective equipment, due to the containment in the transmission of potential viruses. In the midst of the coronavirus pandemic, graphene proved to be a material with considerable relevance for study; however, there is a lack of information in the literature that systematically uses the knowledge of this nanocomposite and its properties and applications specifically for the health area, in order to provide a thorough understanding of antimicrobial performance and attest to its biomedical employability. This study aims to contribute to a review of the literature of articles published in the last five years, using free access platforms as a database. The objective is to analyze and systematize the panorama of technological innovations of graphene in the scope of public health, identifying and investigating five main aspects: temporal evolution of publications, most relevant properties, forms of presentation of the graphene nanocomposite, possible effects of its application to human health, as well as the main obstacles. It was concluded that the number of articles published on the compound has increased significantly in recent years, especially in the year 2020, that the antimicrobial function stands out promisingly among the other functions addressed, in addition to the nanomaterial gaining notoriety due to its applicability in biosensors by enabling the recognition and elimination of pathogens, as well as therapeutic effects brought about by nanomedicines that use graphene as a carrier.

Downloads

Download data is not yet available.

Author Biography

  • Luiggi Cavalcanti Pessôa, Universidade Federal da Bahia (UFBA)

    Orientador, Universidade Federal da Bahia.

References

Zhao X, Yang M. Graphene nanocomposites. Molecules. 2019;24(13):2440. https://dx.doi.org/10.3390%2Fmolecules24132440

Wang P, Cao Q, Yan Y, Nie Y, Liu S, Peng Q. Graphene surface reinforcement of iron. Nanomaterials (Basel). 2019;9(1):59. doi: 10.3390/nano9010059.

Das Sarma S, Adam S, Hwang EH, Rossi E. Electronic transport in two-dimensional graphene. Rev Mod Phys. 2011;83:407. doi = 10.1103/RevModPhys.83.407

Wang J, Mu X, Sun M. The Thermal, electrical and thermoelectric properties of graphene nanomaterials. Nanomaterials (Basel). 2019 feb;9(2):218. doi: 10.3390/nano9020218

Balandin AA, Ghost S, Bao W, et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008;8(3):902-907. doi: 10.1021/nl0731872.

Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science. 2004;306:666-9. doi: 10.1126/science.1102896.

Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science. 2004;306:666-9. doi: 10.1126/science.1102896.

Huang X, Qi X, Boey F, Zhang H. Graphene-based composites. Chem Soc Rev. 2012,41:666-86. doi: 10.1039/c1cs15078b

Peña-Bahamonde J, Nguyen HN, Fanourakis SK, et al. Recent advances in graphene-based biosensor technology with applications in life sciences. J Nanobiotechnol. 2018;16:75. https://doi.org/10.1186/s12951-018-0400-z

Chen L, Liang J. An overview of functional nanoparticles as novel emerging antiviral therapeutic agents. Mater Sci Eng C Mater Biol Appl. 2020;112:110924. doi: 10.1016/j.msec.2020.110924.

de Wit E, van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol. 2016;14:523-34. https://doi.org/10.1038/nrmicro.2016.81.

Cui J, Li F, Shi Z-L. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 2019;17:181-92. https://doi.org/10.1038/s41579-018-0118-9.

Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. doi: 10.1016/S0140-6736(20)30183-5.

Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. 2020;382(13):1199-207.

Sternberg A, Naujokat C. Structural features of coronavirus SARS-CoV-2 spike protein: targets for vaccination. Life Sci. 2020;257:118056. https://doi.org/10.1016/j.lfs.2020.118056.

Samrat SK, Tharappel AM, Li Z, Li H. Prospect of SARS-CoV-2 spike protein: potential role in vaccine and therapeutic development. Virus Res 2020;288:198141. https://doi.org/10.1016/j.virusres.2020.198141.

Chen Y-N, Hsueh Y-H, Hsieh C-T, Tzou D-Y, Chang P-L. Antiviral activity of graphene–silver nanocomposites against non-enveloped and enveloped viruses. Int J Environ Res Public Health. 2016;13:430. https://doi.org/10.3390/ijerph13040430.

Cheng C, Li S, Thomas A, Kotov NA, Haag R. Functional graphene nanomaterials based architectures: biointeractions, fabrications, and emerging biological applications. Chem Rev 2017;117:1826-914. https://doi.org/10.1021/acs.chemrev.6b00520.

Sifuentes-Rodríguez E, Palacios-Reyes D. COVID-19: The outbreak caused by a new coronavirus. COVID-19: la epidemia causada por un nuevo coronavirus. Bol Med Hosp Infant Mex. 2020;77(2):47-53. doi: 10.24875/BMHIM.20000039.

Li H, Liu SM, Yu XH, et al. Coronavirus disease 2019 (COVID-19): current status and future perspectives. Int J Antimicrob Agents. 2020;55(5):105951. doi: 10.1016/j.ijantimicag.2020.105951.

Falavigna M, Colpani V, Stein C, Azevedo LCP, Bagattini AM, Brito GV, et al . Diretrizes para o tratamento farmacológico da COVID-19. Consenso da Associação de Medicina Intensiva Brasileira, da Sociedade Brasileira de Infectologia e da Sociedade Brasileira de Pneumologia e Tisiologia. Rev Bras Ter Intens. 2020;32(2):166-96. https://doi.org/10.5935/0103-507X.20200039.

Prather KA, Wang CC, Schooley RT. Reducing transmission of SARS-CoV-2. Science. 2020;368(6498):1422-4. doi: 10.1126/science.abc6197.

Mhango M, Dzobo M, Chitungo I, et al. COVID-19 risk factors among health workers: a rapid review. Saf Health Work. 2020; 11(3):262-265. doi: 10.1016/j.shaw.2020.06.001.

Brasil. Ministério da Saúde. Secretaria de Vigilância em Saúde. Boletim Epidemiológico Especial. Doença pelo Coronavírus COVID-19. Brasília; 2020. In: Semana Epidemiológica; 25 jun. 2020 [citado 08 ago. 2020]. Disponível em: https://www.saude.gov.br/images/pdf/2020/August/06/Boletim-epidemiologico-COVID-25-final--1-.pdf.

Xiao J, Fang M, Chen Q, He B. SARS, MERS and COVID-19 among healthcare workers: a narrative review. J Infect Public Health. 2020;13(6):843-8. doi: 10.1016/j.jiph.2020.05.019

Tabah A, Ramanan M, Laupland KB, et al. Personal protective equipment and intensive care unit healthcare worker safety in the COVID-19 era (PPE-SAFE): an international survey. J Crit Care. 2020;59:70-5. doi: 10.1016/j.jcrc.2020.06.005

Lotfi M, Hamblin MR, Rezaei N. COVID-19: Transmission, prevention, and potential therapeutic opportunities. Clin Chim Acta. 2020;508:254-66. https://doi.org/10.1016/j.cca.2020.05.044

Singhal T. A review of coronavirus disease-2019 (COVID-19). Indian J Pediatr. 2020;87(4):281-6. doi: 10.1007/s12098-020-03263-6

Zou X, Zhang L, Wang Z, et al. Mechanisms of the antimicrobial activities of graphene materials. J Am Chem Soc. 2016;138(7):2064-77. doi: 10.1021/jacs.5b11411

Vieira Segundo J, Vilar E. Grafeno: uma revisão sobre propriedades, mecanismos de produção e potenciais aplicações em sistemas energéticos. Rev Eletrônica Materiais Processos. 2016;11(2):54–57. Disponível em: http://www2.ufcg.edu.br/revista-remap/index.php/REMAP/article/view/493/387.

Hsueh YH, Hsieh CT, Chiu ST, et al. Antibacterial property of composites of reduced graphene oxide with nano-silver and zinc oxide nanoparticles synthesized using a microwave-assisted approach. Int J Mol Sci. 2019;20(21):5394. doi: 10.3390/ijms20215394

Kumar S, Ahlawat W, Kumar R, et al. Graphene, carbon nanotubes, zinc oxide and gold as elite nanomaterials for fabrication of biosensors for healthcare. Biosens Bioelectron. 2015;70:498-503. doi: 10.1016/j.bios.2015.03.062

Zheng XT, Ananthanarayanan A, Luo KQ, Chen P. Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small. 2015;11(14):1620-36. https://doi.org/10.1002/smll.201402648

Mcmahan RS, et al. In vitro approaches to assessing the toxicity of quantum dots. In: Quantum Dots: applications in biology. New York, NY: Humana Press; 2014. p.155-63.

Chen M, Sun Y, Liang J, et al. Understanding the influence of carbon nanomaterials on microbial communities. Environ Int. 2019;126:690-8. doi: 10.1016/j.envint.2019.02.005

Rutala WA. Disinfection, sterilization, and waste disposal; in Wenzel RP, editor. Prevention and control of nosocomial infections. Baltimore: Williams & Wilkins; 1987. p.257-82.

Chen YN, Hsueh YH, Hsieh CT, Tzou DY, Chang PL. Antiviral activity of graphene-silver nanocomposites against non-enveloped and enveloped viruses. Int J Environ Res Public Health. 2016;13(4):430. doi: 10.3390/ijerph13040430

Kuila T, Bose S, Khanra P, Mishra AK, Kim NH, Lee JH. Recent advances in graphene-based biosensors. Biosens Bioelectron. 2011;26(12):4637-48. doi: 10.1016/j.bios.2011.05.039.

Pal K, Kyzas GZ, Kralj S, Gomes de Souza F. Sunlight sterilized, recyclable and super hydrophobic anti-COVID laser-induced graphene mask formulation for indelible usability. J Mol Struct. 2021;1233:130100. https://doi.org/10.1016/j.molstruc.2021.130100.

Tabah A, Ramanan M, Laupland KB, et al. Personal protective equipment and intensive care unit healthcare worker safety in the COVID-19 era (PPE-SAFE): an international survey. J Crit Care. 2020;59:70-5. doi: 10.1016/j.jcrc.2020.06.005.

Goel S, Hawi S, Goel G, Thakur VK, Agrawal A, Hoskins C, Pearce O, Hussain T, Upadhyaya HM, Cross G, Barber AH. Resilient and agile engineering solutions to address societal challenges such as coronavirus pandemic. Mater Today Chem. 2020;17:100300. doi: 10.1016/j.mtchem.2020.100300.

Gendelman HE, Anantharam V, Bronich T, Ghaisas S, Jin H, Kanthasamy AG, Liu X, McMillan J, Mosley RL, Narasimhan B, Mallapragada SK. Nanoneuromedicines for degenerative, inflammatory, and infectious nervous system diseases. Nanomedicine. 2015;11:751-67. http://dx.doi.org/10.1016/j.nano.2014.12.014

Yang K, Li Y, Tan X, Peng R, Liu Z. Behavior and toxicity of graphene and its functionalized derivatives in biological systems. Small. 2013;9:1492-503. doi: 10.1002/smll.201201417

Seabra AB, Paula AJ, Lima R, Alves OL, Durán N. Nanotoxicty of graphene and graphene oxide. Chem Resn Toxicol. 2014;2 (2):159-68. doi: 10.1021/tx400385x

Chen M, Sun Y, Liang J, Zeng G, Li Z, Tang L, Zhu Y, Jiang D, Song B. Understanding the influence of carbon nanomaterials on microbial communities. Environ Int. 2019;126:690-8. https://doi.org/10.1016/j.envint.2019.02.005

Keshavan S, Calligari P, Stella L, Fusco L, Delogu LG, Fadeel B. Nano-bio interactions: a neutrophil-centric view. Cell Death Dis. 2019;10(8):569. doi:10.1038/s41419-019-1806-8

Lee EJ, Balasubramanian K, Weitz RT, Burghard M, Kern K. Contact and edge effects in graphene devices. Nature Nanotech. 2008;3:486-90. https://doi.org/10.1038/nnano.2008.172

Published

2021-12-10

Issue

Section

Artigos de Revisão/Review Articles

How to Cite

Lira, J. S., Batista Junior , J. M. B. ., Santos, N. M. dos ., & Pessôa, L. C. . (2021). Technological innovations in the post-pandemic period: an analysis of the graphene’s antimicrobial property. Revista De Medicina, 100(5), 486-493. https://doi.org/10.11606/issn.1679-9836.v100i5p486-493