Melittin: the use of the main component of bee venom in the fight against lung tumor cell lines

Authors

DOI:

https://doi.org/10.11606/issn.1679-9836.v101i6e-200516

Keywords:

Antineoplastics, Peptides, Nanoparticles

Abstract

Introduction: Melittin is a peptide formed by 26 amino acids and the main compound of the venom produced by honeybees. Preclinical studies demonstrated an antineoplastic capacity of the compound, evidencing its effect on cancer cell lines. Lung cancer is the deadliest cancer in the world, nine out of ten cases of this disease are related to smoking history. Late diagnosis, often due to lack of clinical symptoms, directly compromises treatment and prognosis, generating a low survival rate. In this sense, melittin appears as a therapeutic approach in lung cancer treatment. Objective: Carry out an integrative review of the literature on research published in the last five years about the effect of melittin on human lung tumor cell lines. Results: 15 publications were found, 10 were excluded because they didn’t respond directly to the proposed objective or because they were duplicate articles, and five were chosen to compose this review. Discussion: Melittin proved to be efficient in controlling lung tumor cell lines, corroborating the results already reported in other tumor cell lines. Conclusion: The use of melittin is a potential approach in the treatment of lung cancer.

Downloads

Download data is not yet available.

Author Biographies

  • Matheus de Barros Picolotto, Universidade Federal de Mato Grosso do Sul

    Apresentado e Premiado - àrea Ciências Básicas - no 3º Congresso Médico Acadêmico – COMAC da Universidade Federal de Mato Grosso do Sul - Três Lagoas.
    Discente do curso de Ciências Biológicas da Universidade Federal de Mato Grosso do Sul - UFMS. Câmpus de Três Lagoas.

  • Helder Silva Luna, Universidade Federal de Mato Grosso do Sul

    Apresentado e Premiado - área Ciências Básicas - no 3º Congresso Médico Acadêmico – COMAC da Universidade Federal de Mato Grosso do Sul - Três Lagoas.
    Professor da Universidade Federal de Mato Grosso do Sul (UFMS), Campus de Três Lagoas (CPTL). 

References

Silveira FA, Melo GAR, Almeida EAB. Abelhas brasileiras: sistemática e identificação. Belo Horizonte: Fernando A. Silveira; 2002.

Witter S, Silva PN, Blochtein B, Lisboa BB, Fonseca VLI. As abelhas e a agricultura. Porto Alegre: ediPUCRS; 2014.

Oliveira-Filho AT, Oliveira LC. Biologia floral de uma população de Solanum lycocarpum St.Hil. (Solanaceae) em Lavras, MG. Rev Bras Botânica. 1988;11(2):23-32.

Pasupuleti VR, Sammugam L, Ramesh N, Gan SH. Honey, propolis, and royal jelly: a comprehensive review of their biological actions and health benefits. Oxidative Med Cel Longevity. 2017;2017:1-21. https://doi.org/10.1155/2017/1259510

Ratajczak M, Kaminska D, Matuszewska E, Hołderna-Kedzia E, Rogacki J, Matysiak J. Promising antimicrobial properties of bioactive compounds from different honeybee products. Molecules (Basel, Suíça). 2021;26(13):4007. https://doi.org/10.3390/molecules26134007

Bridi R, Atala E, Pizarro PN, Montenegro G. Honeybee pollen load: phenolic composition and antimicrobial activity and antioxidant capacity. J Natural Products. 2019;82(3):559–65. https://doi.org/10.1021/acs.jnatprod.8b00945

Ranneh Y, Akim AM, Hamid HAb, Khazaai H, Fadel A, Zakaria ZA, et al. Honey and its nutritional and anti-inflammatory value. BMC Compl Med Ther. 2021;21(1). https://doi.org/10.1186/s12906-020-03170-5

Yosri N, Abd El-Wahed AA, Ghonaim R, Khattab OM, Sabry A, Ibrahim MAA, et al. Anti-viral and immunomodulatory properties of propolis: chemical diversity, pharmacological properties, preclinical and clinical applications, and in silico potential against SARS-CoV-2. Foods (Basel, Suíça). 2021;10(8):1776. https://doi.org/10.3390/foods10081776

Magnavacca A, Sangiovanni E, Racagni G, Dell’Agli M. The antiviral and immunomodulatory activities of propolis: An update and future perspectives for respiratory diseases. Medicinal Res Rev. 2022;42(2):897–945. https://doi.org/10.1002/med.21866

Memariani H, Memariani M, Moravvej H, Shahidi-Dadras M. Melittin: a venom-derived peptide with promising anti-viral properties. Eur J Clin Microbiol Infect Dis. 2020;39(1):5–17. https://doi.org/10.1007/s10096-019-03674-0

Ishida Y, Gao R, Shah N, Bhargava P, Furune T, Kaul SC, et al. Anticancer activity in honeybee propolis: functional insights to the role of caffeic acid phenethyl ester and its complex with γ-cyclodextrin. Integrative Cancer Ther. 2018;17(3):867–73. https://doi.org/10.1177/1534735417753545

Duffy C, Sorolla A, Wang E, Golden E, Woodward E, Davern K, et al. Honeybee venom and melittin suppress growth factor receptor activation in HER2-enriched and triple-negative breast cancer. NPJ Precision Oncol. 2020;4(1). https://doi.org/10.1038/s41698-020-00129-0

Nainu F, Masyita A, Bahar MuhA, Raihan M, Prova SR, Mitra S, et al. Pharmaceutical prospects of bee products: special focus on anticancer, antibacterial, antiviral, and antiparasitic properties. Antibiotics. 2021;10(7):822. https://doi.org/10.3390/antibiotics10070822

Zhang S, Liu Y, Ye Y, Wang X-R, Lin L-T, Xiao L-Y, et al. Bee venom therapy: Potential mechanisms and therapeutic applications. Toxicon. 2018;148:64–73. https://doi.org/10.1016/j.toxicon.2018.04.012

Ruvolo-Takasusuki MCC, Souza PM de. Apitoxina: Utilização do Veneno da abelha Apis mellifera. PUBVET. 2019;13:153. http://dx.doi.org/10.31533/pubvet.v13n8a390.1-7

Aufschnaiter A, Kohler V, Khalifa S, Abd El-Wahed A, Du M, El-Seedi H, et al. Apitoxin and its components against cancer, neurodegeneration and rheumatoid arthritis: limitations and possibilities. Toxins. 2020;12(2):66. https://doi.org/10.3390/toxins12020066

Wehbe R, Frangieh J, Rima M, El Obeid D, Sabatier J-M, Fajloun Z. Bee venom: overview of main compounds and bioactivities for therapeutic interests. Molecules. 2019;24(16). https://doi.org/10.3390%2Fmolecules24162997

Abd El-Wahed AA, Khalifa SAM, Sheikh BY, Farag MA, Saeed A, Larik FA, et al. Chapter 13 - Bee venom composition: from chemistry to biological activity. In: Atta-ur-Rahman, editor. Studies in natural products chemistry. ScienceDirect. Elsevier; 2019. v.60, p.459-484 [cited 2022 Jul 14]. https://doi.org/10.1016/B978-0-444-64181-6.00013-9

Rady I, Siddiqui IA, Rady M, Mukhtar H. Melittin, a major peptide component of bee venom, and its conjugates in cancer therapy. Cancer Lett. 2017;402:16-31. https://doi.org/10.1016/j.canlet.2017.05.010

Zhu H, Chen D, Xie X, Li Y, Fan T. Melittin inhibits lung metastasis of human osteosarcoma: Evidence of wnt/β-catenin signaling pathway participation. Toxicon. 2021;198:132-42. https://doi.org/10.1016/j.toxicon.2021.04.024

Huang J-Y, Peng S-F, Chueh F-S, Chen P-Y, Huang Y-P, Huang W-W, et al. Melittin suppresses epithelial-mesenchymal transition and metastasis in human gastric cancer AGS cells via regulating Wnt/BMP associated pathway. Biosci Biotechnol Biochem. 2021;85(11):2250-62. https://doi.org/10.1093/bbb/zbab153

Jamasbi E, Lucky SS, Li W, Hossain MA, Gopalakrishnakone P, Separovic F. Effect of dimerized melittin on gastric cancer cells and antibacterial activity. Amino Acids. 2018;50(8):1101-10. https://doi.org/10.1007/s00726-018-2587-6

Moghaddam FD, Mortazavi P, Hamedi S, Nabiuni M, Roodbari NH. Apoptotic effects of melittin on 4T1 breast cancer cell line is associated with up regulation of Mfn1 and Drp1 mRNA expression. anti-cancer agents. Med Chem. 2020;20(7):790-9. https://doi.org/10.2174/1871520620666200211091451

Mir Hassani Z, Nabiuni M, Parivar K, Abdirad S, Karimzadeh L. Melittin inhibits the expression of key genes involved in tumor microenvironment formation by suppressing HIF-1α signaling in breast cancer cells. Med Oncol (Northwood, Londres, Inglaterra). 2021;38(7):77. https://doi.org/10.1007/s12032-021-01526-6

Lischer K, Sitorus S, Guslianto B, Avila F, Khayrani A, Sahlan M. Anti-breast cancer activity on MCF-7 cells of Melittin from Indonesia’s Apis cerana: an in vitro study. Asian Pacific J Cancer Prevent. 2021;22(12):3913=20. https://doi.org/10.31557/apjcp.2021.22.12.3913

Yao J, Zhang Z, Li S, Li B, Wang X. Melittin inhibits proliferation, migration and invasion of bladder cancer cells by regulating key genes based on bioinformatics and experimental assays. J Cell Mol Med. 2019;24(1):655-70. https://doi.org/10.1111/jcmm.14775

Shaw P, Kumar N, Hammerschmid D, Privat-Maldonado A, Dewilde S, Bogaerts A. Synergistic effects of melittin and plasma treatment: a promising approach for cancer therapy. Cancers. 2019;11(8):1109. https://doi.org/10.3390/cancers11081109

Lv S, Sylvestre M, Song K, Pun SH. Development of D-melittin polymeric nanoparticles for anti-cancer treatment. Biomaterials. 2021;277:121076. https://doi.org/10.1016/j.biomaterials.2021.121076

Feng J-P, Zhu R, Jiang F, Xie J, Gao C, Li M, et al. Melittin-encapsulating peptide hydrogels for enhanced delivery of impermeable anticancer peptides. Biomaterials Sci. 2020;8(16):4559-69. https://doi.org/10.1039/C9BM02080B

Rajabnejad SH, Mokhtarzadeh A, Abnous K, Taghdisi SM, Ramezani M, Razavi BM. Targeted delivery of melittin to cancer cells by AS1411 anti-nucleolin aptamer. Drug Develop Industrial Pharm. 2018;44(6):982-7. https://doi.org/10.1080/03639045.2018.1427760

Wang J-J, Lei K-F, Han F. Tumor microenvironment: recent advances in various cancer treatments. Eur Rev Med Pharmacol Sci. 2018;22(12):3855-64. https://doi.org/10.26355/eurrev_201806_15270

Nasim F, Sabath BF, Eapen GA. Lung Cancer. Med Clin North Am. 2019;103(3):463-73. https://doi.org/10.1016/j.mcna.2018.12.006

Schabath MB, Cote ML. Cancer Progress and Priorities: Lung Cancer. Cancer Epidemiol Prev Biomark. 2019;28(10):1563–79. https://doi.org/10.1158/1055-9965.epi-19-0221

Yu R, Wang M, Wang M, Han L. Melittin suppresses growth and induces apoptosis of non-small-cell lung cancer cells via down-regulation of TGF-β-mediated ERK signal pathway. Braz J Med Biol Res. 2021;54(2). https://doi.org/10.1590/1414-431X20209017

Zhang S-F, Chen Z. Melittin exerts an antitumor effect on non-small cell lung cancer cells. Mol Med Rep. 2017;16(3):3581-6. https://doi.org/10.3892/mmr.2017.6970

Gao D, Zhang J, Bai L, Li F, Dong Y, Li Q. Melittin induces NSCLC apoptosis via inhibition of miR-183. OncoTargets Ther. 2018;11:4511-23. https://doi.org/10.2147/OTT.S169806

Jeong Y-J, Park Y-Y, Park K-K, Choi YH, Kim C-H, Chang Y-C. Bee venom suppresses EGF-induced epithelial-mesenchymal transition and tumor invasion in lung cancer cells. Am J Chinese Med. 2019;47(08):1869-83. https://doi.org/10.1142/S0192415X19500952

Tipgomut C, Wongprommoon A, Takeo E, Ittiudomrak T, Puthong S, Chanchao C. Melittin Induced G1 Cell Cycle Arrest and Apoptosis in Chago-K1 Human Bronchogenic Carcinoma Cells and Inhibited the Differentiation of THP-1 Cells into Tumour- Associated Macrophages. Asian Pacific J Cancer Prev APJCP. 2018;19(12):3427-34. https://doi.org/10.31557/apjcp.2018.19.12.3427

Lee C, Bae S-JS, Joo H, Bae H. Melittin suppresses tumor progression by regulating tumor-associated macrophages in a Lewis lung carcinoma mouse model. Oncotarget. 2017;8(33):54951–65. https://doi.org/10.18632/oncotarget.18627

Su L, Xu G, Shen J, Tuo Y, Zhang X, Jia S, et al. Anticancer bioactive peptide suppresses human gastric cancer growth through modulation of apoptosis and the cell cycle. Oncology Rep. 2010;23(1):3–9. https://doi.org/10.3892/or.2017.5778

Lee YG, Kim JY, Lee KW, Kim KH, Lee HJ. Peptides from anchovy sauce induce apoptosis in a human lymphoma cell (U937) through the increase of caspase-3 and -8 activities. Ann New York Acad Sci. 2003;1010:399-404. https://doi.org/10.1196/annals.1299.073

Williams DE, Yu K, Behrisch HW, Van Soest R, Andersen RJ. Rolloamides A and B, cytotoxic cyclic heptapeptides isolated from the caribbean marine sponge Eurypon laughlini. J Natural Products. 2009;72(7):1253-7. https://doi.org/10.1021/np900121m

Kim E-K. Purification of a novel anticancer peptide from enzymatic hydrolysate of mytilus coruscus. J Microbiol Biotechnol. 2012;22(10):1381-7. https://doi.org/10.4014/jmb.1207.07015

Conlon JM, Mechkarska M, Prajeep M, Arafat K, Zaric M, Lukic ML, et al. Transformation of the naturally occurring frog skin peptide, alyteserin-2a into a potent, non-toxic anti-cancer agent. Amino Acids. 2013;44(2):715–23. https://doi.org/10.1007/s00726-012-1395-7

Skjånes K, Aesoy R, Herfindal L, Skomedal H. Bioactive peptides from microalgae: focus on anti‐cancer and immunomodulating activity. Physiol Plantarum. 2021;173(2):612-23. https://doi.org/10.1111/ppl.13472

Huang J-Y, Peng S-F, Chueh F-S, Chen P-Y, Huang Y-P, Huang W-W, et al. Melittin suppresses epithelial-mesenchymal transition and metastasis in human gastric cancer AGS cells via regulating Wnt/BMP associated pathway. Biosci Biotechnol Biochem. 2021;85(11):2250-62. https://doi.org/10.1093/bbb/zbab153

Shin J-M, Jeong Y-J, Cho H-J, Park K-K, Chung I-K, Lee I-K, et al. Melittin Suppresses HIF-1α/VEGF Expression through Inhibition of ERK and mTOR/p70S6K Pathway in Human Cervical Carcinoma Cells. Woloschak GE, editor. PLoS ONE. 2013;8(7):e69380. https://doi.org/10.1371/journal.pone.0069380

Mir Hassani Z, Nabiuni M, Parivar K, Abdirad S, Karimzadeh L. Melittin inhibits the expression of key genes involved in tumor microenvironment formation by suppressing HIF-1α signaling in breast cancer cells. Med Oncol (Northwood, London, England). 2021;38(7):77. https://doi.org/10.1007/s12032-021-01526-6

Zhou J, Wan C, Cheng J, Huang H, Lovell JF, Jin H. Delivery strategies for melittin-based cancer therapy. ACS Appl Materials Interfaces. 2021;13(15):17158-73. https://doi.org/10.1021/acsami.1c03640

Chiangjong W, Chutipongtanate S, Hongeng S. Anticancer peptide: Physicochemical property, functional aspect and trend in clinical application (Review). Int J Oncol. 2020;57(3):678-96. https://doi.org/10.3892/ijo.2020.5099

Published

2022-11-29

Issue

Section

Artigos de Revisão/Review Articles

How to Cite

Picolotto, M. de B., & Luna, H. S. . (2022). Melittin: the use of the main component of bee venom in the fight against lung tumor cell lines. Revista De Medicina, 101(6), e-200516. https://doi.org/10.11606/issn.1679-9836.v101i6e-200516