Drug-protein in vitro and in silico interaction analysis with hemoglobin as a study model

Authors

DOI:

https://doi.org/10.11606/issn.2176-7262.rmrp.2021.172174

Keywords:

Hemoglobin, Drug-Protein, Interaction, Molecular Docking

Abstract

Study model: It is an in vitro experimental study with a computational approach. Objective: Analyze the presence of interaction between hydrophobic drugs bezafibrate and hydrochlorothiazide and hemoglobin to predict bioavailability changes as well as in the protein function Metodology: The in vitro tests to evaluate the interaction between the bovine hemoglobin and bezafibrate and hydrochlorothiazide were perfomed by spectrophotometry; bioinformatic tools made interaction analysis and extrapolation for human hemoglobin. Results: The in vitro tests showed a decrease in the absorbance (k) at 405 nm equal to 8.75 x 10-4 min-1 for bezafibrate and 6.25 x 10-4 min-1 for hydrochlorothiazide. The decrease suggests an interaction between the drugs and hemoglobin, for bezafibrate this interaction seems to be stronger than hydrochlorothiazide. The in silico analysis showed that the drugs bind to the protein portion of the hemoglobin. The binding affinity constant obtained by molecular docking from bezafibrate and bovine hemoglobin (-8.3 Kcal/mol) sustain the experimental value of k and the greater number of interactions observed in relation to hydrochlorothiazide (-6.6 kcal/mol). The same pattern was observed for interaction of bezafibrate (-7.6 kcal/mol) and hydrochlorothiazide (-6.7 kcal/mol) with human hemoglobin. Conclusion: The spectrophotometry and bioinformatic methods suggested the possibility of hemoglobin interaction with hydrophobic drugs such as bezafibrate and hydrochlorothiazide; this interaction could affect the normal function of hemoglobin and change the pharmacodynamics and pharmacokinetics of drugs impairing their therapeutic efficiency.

Downloads

Download data is not yet available.

References

BRUNTON, LAURECEN.L. Diuréticos e Outras Substâncias Empregadas na Mobilização do Líquido de Edema. ln Gilman, A.; Goodman, L. & Gilman, A. (13 ed): As Bases Farmacológicas da Terapêutica, Artmed, 2019.

CHAKRABORTI, A.S. Interaction of porphyrins with heme proteins-a brief review. Mol. Cell Biochem. v. 253, n. 1, p. 49-54, 2003.

CHEEMA, M.A.; TABOADA, P.; BARBOSA, S.; CASTRO, E.; SIDDIQ, M.; MOSQUERA, V. Modification of the thermal unfolding pathways of myoglobin upon drug interaction in different aqueous media. J. Phys. Chem. B. v. 111, n. 49, p.13851-13857, 2007.

COSTA, M. D. S.; KIRALJ, R.; FERREIRA, M. M. C. Estudo teórico da interação existente entre a artemisinina e o heme. Quimica Nova, v. 30, p. 25–31, 2007.

DUMAN, O.; TUNÇ, S.; KANCI BOZOĞLAN, B. Characterization of the binding of metoprolol tartrate and guaifenesin drugs to human serum albumin and human hemoglobin proteins by fluorescence and circular dichroism spectroscopy. Journal of Fluorescence, v. 23, n. 4, p. 659–669, 2013.

GOA, K.L.; BARRADELL, L.B.; PLOSKER, G.L. Bezafibrate. An update of its pharmacology and use in the management of dyslipidaemia. Drugs, 53(1):188, 1997.

HAGE, D.S; JACKSON, A.; SOBANSKY, M.; SCHIEL, J.E.; YOO, M.J.; JOSEPH, K.S. Characterization of drug-protein interactions in blood using high-performance affinity chromatography. Sep. Sci. v. 32, n. 5-6, p. 835–853, 2009.

HOBANI, Y.; JERAH, A.; BIDWAI, A. A comparative molecular docking study of curcumin and methotrexate to dihydrofolate reductase. Bioinformation v. 13 n. 3, p. 63-66, 2017.

HU, Y.J.; WANG, J.B.; XIAO, X.H.; QU, S.S. Study of the interaction between monoammonium glycyrrhizinate and bovine serum albumin. J Pharm Biomed Anal, v. 36, n. 4, p. 915-919, 2004.

IRWIN, J.J; STERLING, T.; MYSINGER, M.M.; BOLSTAD, E.S.; COLEMAN, R.G. ZINC: A free tool to discover chemistry for biology. J. Chem. Inf. Model. v. 52, n. 7, p. 1757–1768, 2012.

KAMALJEET.; BANSAL, S; UTTARA, S. A study of the interaction of bovine hemoglobin with synthetic dyes using spectroscopic techniques and molecular docking. Frontiers in chemistry, v. 4, p. 50, 2017.

KRATOCHOWIL, N.A.; HUBER, W.; MULLER, F.; KANSY, M.; GERBER, P.R. Predicting plasma protein binding of drugs: a new approach. Biochem. Pharmacol. v. 64, p. 1355– 1374, 2002.

KWONG, T.C. Free drug measurements: methodology and clinical significance. Clin. Chim. Acta v. 151, n. 3, p. 193-216, 1985.

LALEZARI, I.; LALEZARI, P.; POYART, C.; MARDEN M.; KISTER J.; BOHN B.; FERMI G.; PERUTZ M.F. New effectors of human hemoglobin: structure and function. Biochemistry 29(6): 1515–1523, 1990.

LI, Y.; WEI, H.; LIU, R. A probe to study the toxic interaction of tartrazine with bovine hemoglobin at the molecular level. Luminescence. v. 29, n. 2, p. 195-200.

LIU, Y.; LIU, R. Spectroscope and molecular model identify the behavior of doxorubicin-SPION binding to bovine hemoglobin. Int.J.Biol.Macromol. v. 79, p. 564–569, 2015.

MALTAS, E.; OZMEN, M. Spectrofluorometric and thermal gravimetric study on binding interaction of thiabendazole with hemoglobin on epoxy-functionalized magnetic nanoparticles. Mater Sci Eng C Mater Biol Appl. v. 54, p. 43-49, 2015.

MARTIN, A.; SWARBRICK, J.; CAMMARATA, A.: In: Physical Pharmacy, 3 ed. Virghese Publishing House, India, p 314–351, 1991.

MENG, E. C., SHOICHET, B. K.; KUNTZ, I. D. Automated docking with grid-based energy evaluation. J. Comput. Chem. v. 13, p. 505–524, 1992.

MESSORI, L.; GABBIANI, C.; CASINI, A.; SIRAGUSA, M.; VINCIERI, F.F.; BILIA, A.R. The reaction of artemisinins with hemoglobin: a unified picture. Bioorgan. Med. Chem. v. 14, n. 9, p. 2972–2977, 2006.

NIENHAUS, K.; NIENHAUS, G.U. Probing heme protein-ligand interactions by UV/visible absorption spectroscopy. In: Protein-Ligand Interactions. Humana Press. v. 305, p. 215-241, 2005.

SAFO, M. K.; ABRAHAM, D. J. The X-ray structure determination of bovine carbonmonoxy hemoglobin at 2.1 Å resoultion and its relationship to the quaternary structures of other hemoglobin crystal forms. Protein Sci. v. 10, n. 6, p. 1091–1099, 2001.

SHIBAYAMA, N.; MIURA, S.; TAME, J.R.H.; YONETANI, T.; PARK, S.Y. Crystal structure of horse carbonmonoxyhemoglobin-bezafibrate complex at 1.55-A resolution. A novel allosteric binding site in R-state hemoglobin. J Biol Chem, 277(41):38791-38796, 2002.

SUGIHARA, J.; IMAMURA, T.; NAGAFUCHI, S. BONAVENTURA, J.; BONAVENTURA, C.; CASHON, R. Hemoglobin Rahere, a human hemoglobin variant with amino acid substitution at the 2, 3-diphosphoglycerate binding site. Functional consequences of the alteration and effects of bezafibrate on the oxygen bindings. The Journal of clinical investigation, v. 76, n. 3, p. 1169-1173, 1985.

THE EUROPEAN BIOINFORMATICS INSTITUTE (EMBL-EBI) (org). Pairwise Sequence Alignment. Disponível em: https://bit.ly/2zm6l4a. Acesso em 08/05/2020

THOMPSON, J.D.; HIGGINS, D.G; GIBSON, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. v. 22, n. 22, p. 4673-4680, 1994.

TONG, Z.; SCHIELA, J.E.; PAPASTAVROSA, E.; OHNMACHTA, C.M.; SMITH, Q.R.; HAGE, D.S. Kinetic studies of drug-protein interactions by using peak profiling and high-performance affinity chromatography: examination of multi-site interactions of drugs with human serum albumin columns. J. Chromatogr. A. v.1218, n.15, p. 2065-2071, 2011.

TROTT, O.; OLSON, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. Journal of Computational Chemistry, v. 31, 2010, p. 455-461.

WANG, Y.; ZHANG, H., ZHOU, Q.; XU, H. A study of the binding of colloidal Fe3O4 with bovine hemoglobin using optical spectroscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 337, n. 1–3, p. 102–108, 2009.

WEST, J.B.: In: Best and Taylor’s Physiological Basis of Medical Practices, 11 ed. Williams and Wilkins, London, 1985, p. 546–571.

WU, J.; LORUSSO, P.M.; MATHERL, L.H.; LI, J. Implications of Plasma Protein Binding for Pharmacokinetics and Pharmacodynamics of the γ-Secretase Inhibitor RO4929097. Clin. Cancer Res. v.18 n.7, 2012.

Published

2021-06-24 — Updated on 2021-07-16

Issue

Section

Original Articles

How to Cite

1.
Assis BLM de, Groto AD, Mota VHS da, Peiter GC, Teixeira KN. Drug-protein in vitro and in silico interaction analysis with hemoglobin as a study model. Medicina (Ribeirão Preto) [Internet]. 2021 Jul. 16 [cited 2024 May 17];54(1):e172174. Available from: https://www.periodicos.usp.br/rmrp/article/view/172174